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ABSTRACT

Uncertainties in the predicted isotopic concentrations in spent nuclear fud represent one of the largest
sources of overall uncertainty in criticality calculations that use burnup credit. The methods used to
propagate the uncertainties in the calculated nuclide concentrations to the uncertainty in the predicted
neutron multiplication factor (ke) of the system can have a significant effect on the uncertainty in the
safety margin in criticality calculations and ultimately affect the potential capacity of spent fudl transport
and storage casks employing burnup credit. Methods that can provide a more accurate and realistic
estimate of the uncertainty may enable increased spent fud cask capacity and fewer casks needing to be
transported, thereby reducing regulatory burden on licensee while maintaining safety for transporting
spent fuel. Thisreport surveys several different best-estimate strategies for considering the effects of
nuclide uncertainties in burnup-credit analyses. The potential benefits of these strategies areillustrated
for a prototypical burnup-credit cask design. The subcritical margin estimated using best-estimate
methods is discussed in comparison to the margin estimated using conventional bounding methods of
uncertainty propagation. To quantify the comparison, each of the strategies for estimating uncertainty has
been performed using a common database of spent fuel isotopic assay measurements for pressurized-
light-water reactor fuels and predicted nuclide concentrations obtained using the current version of the
SCALE code system. The experimental database applied in this study has been significantly expanded to
include new high-enrichment and high-burnup spent fuel assay datarecently published for a wide range
of important burnup-credit actinides and fission products. Expanded rare earth fission-product
measurements performed at the Khlopin Radium I nstitute in Russia that contain the only known publicly-
available measurement for '®Rh have also been included.
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FOREWORD

In 1999, the United States Nuclear Regulatory Commission (U.S. NRC) issued initial recommended
guidance for using negative reactivity credit dueto fud irradiation (i.e., burnup credit) in the criticality
safety analysis of spent pressurized-water-reactor (PWR) fuel in storage and transportation packages.
This guidance was issued by the NRC Spent Fud Project Office (SFPO) as Revision 1 to Interim Staff
Guidance 8 (1ISG-8 Rev. 1) and published in the Sandard Review Plan for Transportation Packages for
Soent Nuclear Fuel, NUREG-1617 (March 2000). With thisinitial guidance as a basis, the NRC Office
of Nuclear Regulatory Research initiated a program to provide the SFPO with technical information that
would:

o enableredlistic estimates of the subcritical margin for systems with spent nuclear fuel (SNF) and an
increased understanding of the phenomena and parameters that impact the margin, and

e support the development of technical bases and recommendations for effective implementation of
burnup credit and provide realistic SNF acceptance criteria while maintaining an adequate margin of
safety.

ISG-8 Rev. 1 recommends that the bias and uncertainty associated with predicting the actinide
compositions should be determined from benchmarks of applicable fuel assay measurements. However,
there currently is no guidance or consensus on how the nuclide bias and uncertainty should be propagated
to the criticality calculation. The methods used to propagate the uncertainties can have a significant effect
on the predicted subcritical margin. Conventional bounding approaches to treating nuclide uncertainty
lead to considerable conservatism in the criticality calculation and underestimate the real subcritical
margin for the system. This report examines several best-estimate strategies for propagating nuclide
uncertainties to provide more realistic estimates of the uncertainty and the subcritical margin. The best-
estimate methods are compared to conventional bounding methods to illustrate the potential benefits these
strategies may provide in burnup-credit analyses. The uncertainty studies presented in this report were
performed using a recently expanded radiochemical isotopic assay database that includes new
measurements on spent fue samples that achieved higher burnup and involved higher enrichments than
were previoudly available. The nuclide benchmark results and related discussion provide an important
technical basis for expanding the recommendations and guidancein ISG-8 Rev. 1 to enable increased
utilization of burnup credit and for removal of the loading offset. The use of burnup-credit resultsin
fewer casks needing to be transported, thereby reducing regulatory burden on licensees while maintaining
safety for transporting SNF.

ez thod——

Farouk Eltawila, Director
Division of Systems Analysis and Regulatory Effectiveness
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1 INTRODUCTION

Over the past decade, there has been a concerted effort in the United States and other countries to use
more accurate and realistic estimates of the reactivity worth of spent fud in licensing of spent fud storage
and transportation systems by applying burnup credit. Burnup credit is an approach that credits the
reduction in reactivity in spent fuel dueto irradiation. Criticality safety analyses have traditionally
assumed that the fudl is unirradiated, which clearly leads to considerable safety margins. Thereductionin
reactivity that occurs with burnup is due to the change in concentration (net reduction) of fissile nuclides
and the production of actinide and fission-product neutron absorbers. The U.S. Nuclear Regulatory
Commission (NRC) issued Revision 1 of the Interim Staff Guidance 8 (ISG-8) in July 1999, to provide
guidance on the application of limited burnup credit in criticality safety analyses for pressurized-water-
reactor (PWR) spent fuel in transportation and storage casks™

The process for performing criticality calculations in a burnup-credit model requires two distinct steps —
thefirst to predict the spent fud nuclide concentrations using burnup calculations; the second, to perform
a criticality calculation using the nuclide concentrations estimated in thefirst step. Consideration of the
burnup phenomenain the criticality assessment significantly increases the overall complexity of a
criticality safety analysis, placing increased demands and reliance on the computational tools and
methods, and necessitating consideration of many additional sources of uncertainty associated with fuel
depletion that are not encountered in analyses that assumethe fuel to be unirradiated. 1SG-8 recommends
that

“The applicant should ensure that the analysis methodol ogies used for predicting the
actinide compaositions and determining the neutron multiplication factor (k-effective) are
properly validated. Bias and uncertainties associated with predicting the actinide
compositions should be determined from benchmarks of applicable fuel assay
measurements.”

Uncertainties in the predicted nuclide concentrations in spent nuclear fuel (SNF) represent one of the
largest potential sources of overall uncertainty in criticality calculations that use burnup credit.
Radiochemical assay data provide a basis for determining bias and uncertainty in the predicted nuclide
concentrations. However, the analyst is ultimately required to assess the impact of the nuclide bias and
uncertainty on the predicted neutron multiplication factor (k) for the system. Unfortunately, there
currently is no guidance or consensus on how the bias and uncertainties associated with the spent fue
concentrations should be propagated to the kg in a burnup-credit analysis. The different approaches to
considering nuclide uncertainties can have a significant effect on the predicted margin of subcriticality
and ultimately impact the number and types of spent fuel assemblies that may be acceptable for loading in
casks or storage systems that use burnup credit.

This report reviews and illustrates several different strategies for considering the effects of nuclide
uncertainties in burnup credit. These strategies include a conventional bounding approach whereby the
concentration of each nuclide used in the criticality calculation is conservatively adjusted to account for
bias and uncertainty. Several alternative best-estimate strategies are also evaluated. Best-estimate
strategies attempt to provide a more accurate estimate of the effect of nuclide uncertainty on the kg
(subcritical margin for uncertainty) by combining the effects of individual nuclide uncertaintiesin a more
realistic manner. The margin resulting from nuclide uncertainties, as estimated using each strategy, is
illustrated for PWR spent fuel stored in a prototype burnup-credit cask. The nuclide uncertainties used in
theseillustrative studies are derived from a recently revised and expanded set of common radiochemical
assay benchmarks. Recent publication of assay measurements for Japanese Takahama-3 reactor spent
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fud has significantly expanded the database that is publicly available in the United States, in terms of
both the number of measurements and the enrichment and burnup range covered by the database. These
new measurements include data for high-enrichment and high-burnup samples and include extensive
actinide and fission-product measurements. Recently-published fission-product measurements performed
at the V. G. Khlopin Radium Institute (KRI) in Russia for rare earth fission products are also included.
The KRI measurements include the only known publicly-available measurement for the major fission-
product absorber '®Rh.

Although the effect of nuclide uncertaintiesisillustrated for PWR fud, the methodol ogies described in
this report are equally applicable to the analysis of boiling-water-reactor (BWR) spent fuel.



2 BIASAND UNCERTAINTY

I mplementation of burnup credit requires the computational prediction of the nuclide inventories
(compositions) for the dominant fissile and absorbing nuclide species in spent fuel. This task introduces
sources of bias and uncertainty in the criticality calculation that are not present in analyses that assume
thefuel to be unirradiated. This section defines the terms bias and uncertainty, and briefly discusses the
potential sources of bias and uncertainty in burnup calculations used to predict nuclide compositions.

The American National Standard ANSI/ANS-8.1 for nuclear criticality safety in operations outside
reactor&didentifies the key requirements for the validation of computational methods used to determine
the subcritical state of a system. The ANS Standard requires that the computer codes and methods used
in acriticality evaluation are validated and the bias and uncertainty in these predictions are well
characterized and quantified. The Standard defines the term “bias’ asa measure of the systematic
differences between calculational method results and experimental data. Theterm “uncertainty” isa
measure of both the accuracy of the calculations and the uncertainty in the experimental data used in the
validation process.

There are avariety of potential sources of bias and uncertainty that can influence the accuracy and
precision of computer codes used to predict spent fuel compositions. These sources can be generally
categorized as follows:

e Computational methods. The bias and uncertainty attributed to the computational algorithms,
methods and numerical approximations.

¢ Nuclear cross-section and decay data. The bias and uncertainty in the nuclear data used in the
burnup calculations. These may include errors in the evaluated neutron cross sections, fission-
product yields, branching fractions, and decay constants, €tc., that are used by the code in
computing the spent fue compositions.

¢ Input parameters. The uncertainty in the values of the input data used in the code predictions.
Examples include the declared burnup of the spent fuel, and reactor-operating parameters
(eq., fission power, fuel temperatures, and moderator density).

e Maodeling. The bias and uncertainty introduced by modeling approximations. For example, the
time-dependent fission power may be well known, but may be approximated using a series of
discrete steps that simulate the average power for each irradiation interval. Other sources of
uncertainty may be introduced by approximations in modeling the fuel assembly geometry,
control rod (CR) exposure, and other difficult-to-simulate phenomena (e.g., the effects from
adjacent reactor fud assemblies).

o Experimental data. The bias and uncertainty associated with the experimental data. This source
of error can represent a potentially large source of the overall uncertainty in isotopic validation.
Radiochemical analysis of spent fuel is complex and difficult, and the uncertainties associated
with the nuclide measurements can be significant. When computer code predictions are
benchmarked against experimental data, the differences between calculations and observation are
often incorrectly attributed to the bias and uncertainty of the code, becauseit is usually not
possibleto differentiate between code errors and experimental errors.

All of the results presented in this report are based strictly on the analysis of nuclide bias and uncertainties
as determined by comparison of calculated and measured nuclide concentrations for well-documented and
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well-characterized spent fud samples. That is, the calculated concentrations were obtained using as-
published operating history data, reactor conditions, and detailed assembly design information. This
report does not address the potential use of conservative input parameters and/or modeling assumptions to
bound the uncertainties in these types of parameters. For example, conservative reactor operating
conditions (e.g., fud temperatures, moderator density, etc.) may be used to account for uncertaintiesin
these input parameters when detailed information is not available. Similarly, a conservative assembly
model may be used to bound the effects for assemblies that were potentially exposed to CRs or burnable
poison rads (BPRs). Thesetypes of modding assumptions may be used to provide additional
conservative bias to the calculation, but are not addressed in this report.



3 METHODS OF UNCERTAINTY PROPAGATION

The different approaches used for treating uncertainties in complex calculational models are generally
grouped as ether “bounding” methods or “best-estimate” techniques. The former methods conservatively
account for individual parameter uncertainty. The latter techniques use best-estimate parameter valuesin
the analysis and then use Monte Carlo (probabilistic) methods or other techniques, such as sensitivity
analysis, in an attempt to realistically quantify the uncertainty in the final results caused by parameter
uncertainties.

This section describes several different methods of estimating the uncertainty in the subcritical marginin
a burnup-credit analysis due to uncertainty in the predicted nuclide inventories used in the criticality
calculation. Although this discussion covers avariety of different techniques that have either been used
or proposed for use in burnup credit or other applications, the methods described do not represent all of
the potential methods available to treat nuclide uncertainties in burnup credit.

The sources of bias and uncertainty discussed in this report are restricted to those associated with the
nuclide concentrations only, and do not include sources associated with other aspects of the criticality
calculation. Similarly, as discussed in the previous section, this report does not address the use of
conservative input parameters or models to bound the effects of other uncertainties in the analysis. Such
uncertainty contributions must be addressed, and may be included as separate biases that are based on
bounding parameter values.

Theterm “margin” is used throughout this report to define the margin of subcriticality for safety to
conservatively account for the effect of nuclide uncertainties on the calculated kg for the system.

3.1 BOUNDING METHOD

In a conventional bounding approach to treating uncertainty, the analysis assumptions and input
parameters are simultaneously set to their limiting values (maximum or minimum) to produce the most
conservativeresult. As applied to nuclide uncertainties in burnup credit, this approach uses
conservatively-adjusted values for the predicted concentration of each nuclide used in the criticality
calculation. This requires that the bias and uncertainty in the predicted concentration of all nuclides used
in the analysis be established by comparisons of calculated and measured radiochemical assay data.

In the bounding approach, the calculated nuclide concentrations are adjusted in a way that always leads to
amore reactive system. In other words, the concentration of fissile nuclides is always increased, while
the concentration of absorbing nuclides is always decreased, in order to maximize the kg of the system.
This approach ensures that the predicted margin of subcriticality due to the bias and uncertainties will be
alimiting, or bounding value. The U.S. Department of Energy (DOE) proposed such an approach in
support of transportation and storage burnup credit

The bounding approach, whereby individual nuclides are simultaneously adjusted to their limiting values,
is conservative, but the predicted margin will be unrealistically large. The variability in the calculated
nuclide concentrations will not always bein a direction that results in a more reactive system — the
concentration of some nuclides will be underpredicted, while other nuclides will be overpredicted.
However, such an approach is simple, easy to justify as conservative, and yields concentrations that, when
used in a criticality calculation, will provide an upper-bounding estimate of the kg for the system.
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The margin predicted using bounding methods is not a conventional uncertainty in the sensethat it isa
one-sided limiting margin that does not have an associated variance. The bounding margin represents the
maximum contribution of nuclide variability to the subcritical margin. Because bounding methods lead to
an unrealistically large estimate of the effects of nuclide variability, the ke tends to be overestimated, and
asaresult, the actual criticality safety margin is underestimated.

Several published benchmark studies have analyzed available experimental isotopic assay data using the
depletion methods of the SCALE code system in order to determine average isotopic correction factors
that are applied to the predicted nuclide concentration to account for nuclide bias and uncertainty. Such
factors are appropriate for usein a bounding-type analysis approach. A description of the statistical
concepts and methods in this approach is given in Refs. 4, 5, and 6!

3.2 BEST-ESTIMATE METHODS

Best-estimate methods are expected to provide a more realistic and accurate estimate of effects of nuclide
uncertainty in a burnup-credit spent fuel system by combining the effects of nuclide uncertainty in a more
realistic and rational manner. The best-estimate methods enable more accurate estimates by attempting to
realistically simulate the random nature of uncertainty, and thus, the methods partially credit
compensating random uncertainties in the calculated nuclide concentrations.

Current recommended practice in nuclear criticality safety does not credit positive bias. In this report
uncertainty is addressed separately from the bias component, which is a non-random systematic error.
This approach allows the practice of not crediting positive bias to be preserved in the best-estimate
methods described.

Several best-estimate methods can be used to propagate individual nuclide uncertainties to a global
estimate of the margin for uncertainty. Three best-estimate methods are explored in this report:

e Monte Carlo (MC) uncertainty sampling method,
e Senditivity/uncertainty (S/U) method, and

e a“direct difference” method.

3.2.1 Monte Carlo Uncertainty Sampling

Thetotal uncertainty in a computed quantity may be estimated using a technique that involves

Monte Carlo (probabilistic) sampling of the uncertainty distributions for the different parametersused in a
calculation. Unlike a bounding calculation that is performed using a single set of conservative parameter
values and |eads to a single bounding estimate of the margin, the Monte Carlo approach undertakes
multiple calculations with changes to the input parameters that reflect the random uncertainty variation

for each parameter. The multiple calculations yield a distribution of results from which the expected
mean is obtained, and probability of exceeding a particular value, or threshold, can be determined. Any
potential correlation between different parameters must be considered and accounted for in the sampling
scheme.

For burnup-credit nuclide uncertainty calculations, the technique involves stochastically varying the
nuclide concentrations according to the uncertainty in the predicted concentration of each burnup-credit
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nuclide (e.g., anormal distribution defined by a mean and variance). The mean and variance for each
burnup-credit nuclide are established from comparisons of measured and computed nuclide
concentrations. By sampling the nuclide concentrations independently, this technique inherently assumes
that the uncertainties in individual nuclide concentrations are independent. This assumption is
investigated later in by comparing the results obtained by Monte Carlo sampling with
independent methods that do not presume independent uncertainties. Although the nuclides
uncertainties are assumed to be independent in the Monte Carlo approach, the nuclide biases are known
to be strongly corrdated. The analysis of nuclide bias is discussed in

The practical implementation of the Monte Carlo method requires automation of the statistical sampling
to determine the nuclide concentrations that are applied in the criticality analysis modd. Toillustrate this
approach, a Monte Carlo sampling method was implemented at Oak Ridge National Laboratory (ORNL)
in a computer code called designed to function within the SCALE code system. The
KRONOS program provides a realistic estimate of the uncertainty in the neutron multiplication factor due
to nuclide uncertainties by randomly sampling from the probability distributions for the individual
nuclides as determined from nuclide benchmark studies. The mean and variance for each nuclide (used to
define the sampling distribution) areinput directly to the code. KRONOS will perform either a SCALE
CSAS1X one-dimensional (1-D) XSDRNPM calculation or a CSAS25 three-dimensional (3-D)

KENO V.acriticality calculation for the system. The calculations are repeated, automatically, until the
mean K and variance of ke are converged. Because of the large number of criticality calculations
required by this method to provide statistically reliable results, the code was developed for parallel
processing on a distributed network environment.

3.2.2 Sensitivity/Uncertainty

Sensitivity methods have been widely used as a means of quantifying the effect of input data and other
data parameters on computer model predictions. These methods are generally used to devel op sensitivity
coefficients for a system. Sensitivity coefficients are defined physically such that they represent the
change in a calculated response with respect to a change in theinput or data parameter. A sensitivity
coefficient of 1.0 means that a 1% change in the parameter will cause a 1% changein theresult. The
sensitivity coefficients provide a direct measure of parameter importance by quantifying the effect of
changes in the system response due to variations in the parameter values. Combined with parameter
uncertainty information, S/U techniques can provide a powerful tool to estimate the global system
uncertainty caused by uncertainties in multiple parameters.

As applied to the analysis of nuclide uncertainty in burnup-credit calculations, sensitivity coefficients are
proportional to the derivative of the neutron multiplication factor of the system, kg, with respect to the
nuclide concentrations evaluated at some reference value. With this approach the relative change in ke
due to a change in the concentration of nuclide N is expressed to first-order accuracy by the linear
relationship

where the proportionality constant Sy is the sensitivity coefficient of k to the nuclide concentration N.
This technique provides a straightforward method of predicting the change in the ke given a variability in
the nuclide concentration attributed to the nuclide uncertainty. The uncertainty, expressed as ardative
change in the concentration, dN/N, may be abtained for the important burnup-credit nuclides by
comparing predicted and measured nuclide concentrations in SNF. The uncertainty from multiple
nuclides may be combined to provide a measure of total uncertainty. If the uncertainties for each nuclide



Methods of Uncertainty Propagation Section 3

are assumed to be independent, the total uncertainty can be estimated as the root sum square of the
individual nuclide effects, such that

d—kk=Ji(dWN{sN}j2 ,

i=1

wherethe sumis performed over all n burnup-credit nuclides in the criticality analysis. If the
uncertainties from each nuclide are combined additively (using the absolute values of the sensitivity
coefficients Sy), such that

dk _&dN
PR

then the uncertainty is equivalent to that predicted using the bounding approach discussed in

Several methods are available to abtain sensitivity coefficients. Traditionally, many sensitivity analyses
havereied on direct parameter perturbations (i.e., slightly altering the value of a parameter and
recalculating the response). However, for large systems involving many different parameters, this
approach is extremely inefficient. Another technique involves the use of automatic differentiation
methods to provide partial derivatives (which are directly related to the sensitivity coefficients) of the
response to any of the input parameters. Other techniques have applied the widely used perturbation
theory approach. This technique involves solution of the forward and adjoint neutron fluxes to provide
sensitivity coefficients for the system.

Sensitivity coefficients used in this report were generated for a generic burnup-credit cask using SEN35, a
prototypic SCALE code sequence that implements sensitivity analysis techniques for 3-D Monte Carlo
criticality calculation5] The methods used to generate the sensitivity information are based on the
widely-used perturbation theory approacl@ SEN35 calculates forward and adjoint neutron fluxes using
an enhanced version of the KENO V.a Monte Carlo criticality code. Oncethe fluxes are obtained, the
SAMS module (Sensitivity Analysis M odule of SCALE) produces flux moments and calculates the
sensitivity coefficients from these data and the cross-section data. The SAM S module also calculates the
uncertainty in the sensitivity coefficients resulting from Monte Carlo uncertainties. The principal
motivation behind the development of the SEN35 sequence has been the need for modern computational
tools that can generate the sensitivity data necessary to gauge the applicability of validation experiments
used for criticality studies.™

SEN35 generates sensitivity coefficients for the various partial and total macroscopic cross sections for
each nuclide in the criticality calculation. Since the macroscopic cross section is the product of the
atomic number density and the microscopic cross section, the sensitivity coefficient for the nuclide
concentration is exactly equal to the sensitivity coefficient of thetotal (energy-integrated) nuclide cross
section calculated by SEN35. To generate sensitivity coefficients representative of spent fud
compositions, multiple SEN35 calculations were undertaken at discrete burnup values, with each
calculation using a different fue compaosition representative of each burnup level. Sensitivity coefficients
were generated for spent fuel assemblies with a uniform axial burnup and a varying axial-burnup profile.
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3.2.3 Direct Difference M ethod

Another best-estimate technique, called the direct difference method in this report, has been explored at
ORNL. Instead of evaluating the bias and uncertainty in the individual nuclides used in burnup-credit
calculations, the measured nuclide concentrations from radiochemical assays are applied directly in a
criticality calculation for a spent fuel configuration representative of the intended burnup-credit
application. The kg calculated for the system is then compared to the value predicted using calculated
nuclide concentrations for the same set of burnup-credit nuclides. The difference (Aky) is adirect
measure of the net bias and uncertainty in the kg calculation due to the variability in the predicted nuclide
concentrations.

Unlike the other methods described in this report, this approach evaluates the aggregate effect of the
nuclide uncertainties on kg directly, and does not require a statistical analysis of bias and uncertainty for
any individual nuclide. Rather, the net effect of bias and uncertainty from all nuclides is determined
directly from analysis of the mean and variance of the distribution of Akg values obtained using the
predicted and measured nuclide concentrations from many experiments. Like the other best-estimate
methods described, the direct difference method inherently credits compensating uncertainties in the
nuclide concentrations. This method requires a comprehensive database of measured isotopic validation
data for acommon set of burnup-credit nuclides. That is, an experimental data set must contain
measurements for all nuclides selected for the burnup-credit analysis in order to be used by this method.
Consequently, asthe number of nuclides used in a burnup-credit analysis increases, the number of
experiments containing all of the required nuclides tends to decrease. A sufficient number of
measurements is needed to allow statistically reliable observations to be made about the uncertainty and
trends in the predicted k. Another limitation of the method is that only spent fuel with a uniform axial
burnup can be simulated since assay data are not available for all of the burnup values required to
simulate an axial profile.

The Monte Carlo uncertainty sampling, S/U, and direct difference best-estimate approaches are expected
toyield similar results since all methods have applied a common set of nuclide uncertainties. The direct
different method of using measured nuclide assay datadirectly in criticality calculations has the potential
to require far less computational effort than either the Monte Carlo or S/U techniques. Moreover, the
direct difference method does not assume that the nuclide uncertainties are independent, and makes no
assumptions about nuclide uncertainty distribution (e.g., normal distribution, etc.); particularly for
nuclides with too few measurements to obtain areliable estimate of the distribution.

The effect of nuclide uncertainties on the subcritical margin predicted using the Monte Carlo, S'U, and
direct difference approaches is demonstrated for atypical burnup-credit cask in The
experimental assay data currently available that were applied to the different methods are described in
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The net effect of nuclide uncertainties on the predicted effective neutron multiplication factor, ke, was
evaluated using best-estimate methods and compared to the results using a bounding approach. These
methods are summarized in To establish a common basis for the comparisons, values of the
bias and uncertainty for each burnup-credit nuclide wererequired. The bias and uncertainties were
estimated from radiochemical isotopic assay data and applied to each of the respective uncertainty
analysis methodologies. This section reviews the nuclides that are important in burnup-credit
calculations, describes the publicly-available radiochemical assay data sl ected and evaluated for this
study, and summarizes the results of the benchmark studies to predict the isotopic compositions in spent
fudl using the SCALE code system.

The actinides and fission products that are most neutronically important in burnup-credit criticality
calculations are listed in Table 1. These nuclides are considered to be important to dry storage and
transport cask criticality safety analys&c.@ Therelativeimportance of these nuclides will vary to some
degree, depending on the enrichment, burnup, cooling time, assembly design, and configuration, but the
important nuclides remain largely the same. The sensitivity coefficients of the major burnup-credit
nuclides areillustrated in for low- and high-burnup fuel, following a 5-year-cooling time.

The sensitivity coefficients were calculated by the SEN35 sequence of SCALE assuming uniformly-
distributed nuclide concentrations. The values of the coefficients arelisted in The
sensitivity coefficients (unitless) represent the change in the neutron multiplication factor with respect to a
change in the concentration of each nuclide. The coefficients are therefore a direct measure of the relative
importance of each nuclide to the predicted neutron multiplication factor.

Table1 Major isotopesin criticality calculations (from

Actinides
234U 235U 236U 238U 238Pu 239Pu
240Pu 241Pu 242Pu 241 A m 243 A m 237N p

Fission products

95M o 99-|- C 101Ru 103Rh 109 A g 133CS
143N d 145N d 147Sm 1498m 1508m 1518m
151Eu 1528m 153Eu 1556 d

11
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Figure 1 Sensitivity coefficients (absolute values) for the major actinides and fission productsin
burnup-credit criticality calculations. The spent fuel compositions were calculated assuming 3.5 wt %
enrichment and a burnup of 20 and 60 GWd/MTU, and a cooling time of 5 years. The nuclides are
ranked in order of decreasing importance for the 20 GWd/MTU case.
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41 REVIEW OF EXPERIMENTAL DATA

A comprehensive review of available PWR radiochemical assay datawas ﬂdertaken for this study.
Thisincluded areview of previous validation studies performed at ORNL23 and by the U.S. DOE Office
of Civilian Radioactive Waste Management (OCRWM j,E]and new assay data published more recently.
The data sets selected for this study include all PWR assays used previously in ORNL benchmark studies
(Calvert Cliffs, H. B. Robinson, Obrigheim, Trino Vercellese, and Turkey Point reactor fuel) and the

Y ankee Rowe reactor assay data previously used only inthe OCRWM studies. Details of the reactor
descriptions, fuel descriptions, laboratories, and experimental methods can be found in the citations to the
original works in Refs. 12, 5, and.6|

In addition to these previous studies, recently published assay data for spent fuel from the Japanese PWR
Takahama-3 reactor, which include samples with the highest enrichment and burnup publicly available,
have also been evaluated at ORNL™and added to the database. The updated database includes a total of
56 individual spent fuel assay samples from seven different reactors. summarizes the reactors,
assembly designs, and fuel parameters. lists the important burnup-credit actinides measured in
each sample. Note that measurements are available for all of the major actinides listed in

There are additional spent fuel samples available from some of these programs that have not been
analyzed in the previous studies. The assay samples were selected to provide a reasonable number of data
comparisons for validation and provide a representative sample of the available data.

Spent fuel assay data for the Mihama reactor, used previouslythe OCRWM stud)},Ewere not selected
for the present study. A review of the Mihama data by ORN L5lindi cated there was a high variation in the
measurements for fuel having similar burnups and fuel assembly locations. Erratic behavior was also
observed for fuel samples taken from different axial positions of the samerod. Since the enrichment and
burnup range of the Mihama measurements did not extend beyond the range provided by other data sets,
these data were not added to the present study.

The availability of experimental fission-product data is currently very limited. A summary of the
measured fission-product data used in this study is givenin Measurements for fission products
important to burnup credit (see are availablein only a small subset of the fuel samples. The
majority of fission-product data available previously for burnup-credit nuclides come from measurements
of the Calvert Cliffs Approved Testing Material (ATM) samples performed at the Pacific Northwest
Laboratory (PNL) Materials Characterization Center. The Calvert Cliffs measurements, designated
ATM-103, ATM-104, and ATM-106, included nine samples with measurements for *Tc. However, only
the three samples in the ATM-104 series included measurements for the burnup-credit fission-product
nuclides ***Cs, and the Nd, Sm, Eu, and Gd isotopes. A limitation of the ATM-104 fission-product
measurements, described in is that the mass spectrometry measurements for nuclides with mass
numbers 147 (Pm, Sm), 150 (Nd, Sm), 151 (Sm, Eu), and 155 (Eu, Gd) included the parent and daughter
nuclides of morethan one eement. In other words, the combined concentrations of the parent-daughter
pairs in the mass chains (e.g., **’Pm + **Sm) were measured, rather than the concentrations of the
individual isotopes. The reported concentrations for the isotopes *'Sm, **°Sm, **Eu, ***Eu, and **°Gd
were estimated from the measurements and fractional element distributions obtained from burnup
calculations.

13
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Table2 Summary of selected PWR spent fuel radiochemical assay data
Enrichment Burnup No. of
Reactor Lattice type (Wt %) (GWdit) Absorbers samples

Trino Vercellese WE 15 x 15 3.13 11.5-245 CR* 13
3.897 12.0 1
Turkey Point WE 15 x 15 2.556 30.5-315 3)
Obrigheim CE14x 14 3.13 25.9-295 6
H. B.Robinson-2 | WE 15x 15 2.561 16.0 - 31.7 BPR® 4
Y ankee Rowe WE 17 x18 3.4 16.0-36.0 CR 8
Calvert Cliffs CE14x 14 3.038 27.4-44.3 3
2.72 18.7-33.2 3
2.453 31.4-46.5 BPR 3
Takahama-3 WE 17 x 17 411 14.3-47.3 BPR 10

Range 256-4.11 11.5-473 Total 56

% CR = Assemblies exposed to control rods.

® BPR = Assemblies with burnable poison rods.
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Subsequent to the original ATM-series fission-product measurements made at PNL, an independent
analysis of the three ATM-104 samples, and one sample from ATM-106, was performed at the

V. G. Khlopin Radium Ingtitute (KRI) in Russia using samples partitioned from the original archived
samples. Theisotopic measurements included Nd, Sm, Eu, and Gd for all samples. In addition, the '®Rh
content of the ATM-106 sample was measured. This represents the only known publicly-available
measurement of Rh in spent fuel. In addition, the KRI results also include measurements for several rare
earth fission products not available previously for ATM-106 sample NBD107-GG. The KRI results were
only recently published in an effort supported by the NRC for burnup-credit validation studies.
The results from the analysis by KRI were normalized to **Nd concentration instead of the more usual
basis of uranium mass or fuel mass. However, absolute **Nd concentrations, normalized to the fuel
mass, were measured as part of the ATM-series of experiments and are reported in The PNL
results for **Nd were used in this study to renormalize the KRI results to an absolute basis of fuel mass
for use in the isotopic benchmark calculations. For this study the KRI results for the Nd, Sm, Eu, and Gd
isotopes were used (with the noted exception of **Nd). The calculated results for these nuclides were
adjusted to the cooling time of the KRl measurements, performed about 8 years after the ATM-series
measurements.

Results for the important burnup-credit isotopes of Nd and Sm were also available from the Takahama-3

samples, significantly augmenting the number of measurements for these isotopes. Therdative

importance of the fission-product nuclides in criticality calculations using burnup credit isillustrated in

Note that *®*Rh, one of the dominant fission products in high-burnup spent fuel, currently has

%gly one measurement. To date, no published assay results have been identified for *Mo, ***Ru, and
Ag.

42 RADIOCHEMICAL ASSAY BENCHMARK RESULTS

In order to evaluate the various methods for propagating nuclide uncertainties, comparisons of calculated
and measured nuclide compasitions are needed to estimate the code bias and uncertainty for each nuclide.
For this study, the depletion analysis sequence[SAS2H™]of the SCALE code system was used to predict
the nuclide compasitions for each spent fud sample. Cross sections for the ORIGEN-S depletion
analysis@performed by SAS2H were obtained from the SCALE 44-group ENDF/B-V-based cross-
section Iibrary.@] The spent fud nuclide compasitions were recalculated for this work using the most
recent version of SCALE 4.4aand cross-section data and improved models of the fuel assemblies.

Several improvements were made to the models used in early isotopic validation studies from
Most notably, the models for the three Calvert Cliffs assembly BT03 samples were revised to include

12 burnable-poison shim rods and four non-fuel sted rods present in the assembly. The presence of these
non-fuel rods was not documented in the Approved Testing Material (ATM-106) feport? for these
samples (the assemblies are incorrectly described as standard Combustion Engineering (CE) 14 x 14
assemblies containing 176 fuel rods) and thus they were not included in the original models. Information
on the non-fuel rods and the updated assembly models was obtained from

Measurements for *Am and “*Pu were available for several Trino Vercellese samples from assembly
509-069 but were not included in previous benchmark studies. Results for these nuclides were included
in the present study. The *Am results were reported for a 4-year-cooling time.

The measured actinide concentrations for all spent fud samples used in this study, converted to
standardized units of mg/g U initial, arelisted in jAppendix Table A.1] Theresults of the actinide
benchmark calculations obtained using SCALE are given in astheratio of the calculated-to-
experimental (C/E) nuclide compositions. [Table A.d also provides a statistical summary of the results
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and lists the average C/E ratio and the relative standard deviation (percent of C/E) for each nuclide. The
average experiment-to-measured ratio is also listed. Experimental results for the major burnup-credit
fission products arelisted in and the C/E ratios are given in The actinide results are
observed to be generally consistent with previous studialthough the uncertainty associated with
several major uranium and plutonium isotopes is somewhat improved. Thisis duein part from the
improved data and models used in the present calculations, and the addition of the Takahama-3 data that
were generally found to bein very good agreement with the calculations. These improvements are
negated to some extent by the addition of the Y ankee Rowe data (hot included in previous ORNL

studies), which exhibited consistently large deviations with the calculations.

Thefission-product database has been expanded with the addition of the Takahama-3 results. The use of
the fission-product results from KRI also enhances the database by providing the first *®*Rh measurement,
and direct measurements of the **’Sm, ***Sm, ™'Eu, and ***Gd isotopes. In addition, the KRI results
included measurements for rare earth fission products in Calvert Cliffs sasmple NBD107-GG that were not
previously available. The C/E results for the fission products are again generally consistent with previous
studie™ Overall, however, thereis a paucity of fission-product data, with three nuclides having no
measurements and one nuclide (***Rh) having only one measurement. The uncertainty for several fission
products is also seen to be relatively large (e.g., **Sm, **Sm, **'Eu, *°Gd).

A summary of the nuclide validation resultsis given in The tablelists the number of measured
samples analyzed for each nuclide (n), the average experiment-to-measured ratio (X ) and the relative

standard deviation (s) of X for each burnup-credit nuclide, i. The value of Yi is calculated as:
71 :Z(Mu‘ I1C;)In,
=1

where M; are the measured and C; are the computed concentrations for nuclidei, and the summation is
performed over all n samples. The standard deviation s associated with Yi , Iscomputed as:

— 1 C RAY:
S _\/(n_l)Z(xi,j X))

i1

The value of Yi represents the factor, that when multiplied by the predicted nuclide concentration, will
correct for the average bias in the predicted concentration.

The current recommended practicein criticality safety evaluations involving transportation packages@
does nat credit biases that result in an overprediction in the neutron multiplication factor, i.e., positive

biases. As applied to burnup credit, this practice would lead to modified values of X , depending on
whether the nuclide was a net neutron absorber or a fissile nuclide. In other words, no credit would be
applied for the overprediction of fissile nuclides or the underprediction of absorbing nuclides. For fissile

nuclides, the modified factor X’ can be expressed as

—. 7,if§>l
X' = _
1,ifX <1

and for net neutron absorbing nuclides,
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—. 7, if X <1
X' = _
1,if X > 1.

Thevaluesof X and X’ aregivenin Table5. Theeffect of using either X or X’ inacriticality
calculation is evaluated in Section 6]

Table5 Nuclide validation results used in bias and uncertainty analyses

Nuclide n X X’ & Nuclide

X X’ S

=]

U-234 32 0.962 | 0.962 | 0.113 Ru-101 N/A® N/A N/A

U-235° 56 1.018 | 1.018 | 0.030 Rh-103 1.269 | 1.000 N/A

U-236 56 1.008 | 1.000 | 0.037 Ag-109 N/A N/A N/A

wWw| o+ | O

U-238 56 1.000 | 1.000 | 0.005 Cs-133 0.976 | 0.976 | 0.009

D

Np-237 18 0.952 | 0.952 | 0.086 Nd-143 1 1.012 | 1.000 | 0.013

Pu-238 52 1.068 | 1.000 | 0.100 Nd-145 14 0.996 | 0.996 | 0.009
Pu-239° 56 1.008 | 1.008 | 0.042 Sm-147 9 1.001 | 1.000 | 0.039
Pu-240 56 1.008 | 1.000 | 0.028 Sm-149 9 1.002 | 1.000 | 0.221
Pu-241° 56 1.045 | 1.045 | 0.048 Sm-150 9 0.934 | 0934 | 0.018
Pu-242 52 0.987 | 0.987 | 0.051 Sm-151 9 0.777 | 0.777 | 0.059
Am-241 28 0.919 | 0.919 | 0.204 Sm-152 9 0.751 | 0.751 | 0.142
Am-243 16 0934 | 0934 | 0.105 Eu-151 4 0.926 | 0.926 | 0.532
Mo-95 0 N/A° N/A N/A Eu-153 4 0.966 | 0.966 | 0.048
Tc-99 9 0.844 | 0.844 | 0.194 Gd-155 4 1.287 | 1.000 | 0.124

2 Standard deviation of X .
® Fissile nuclides.
¢ Insufficient experimental data available to determine mean or standard deviation.
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43 APPLICABILITY OF THE EXPERIMENTAL DATABASE

A potential concern when applying measured isotopic assay data to evaluate nuclide uncertaintiesin
computational predictions is whether the experimental database is representative of modern fuel
characteristics. Theissue of applicability isimportant since a large number of the currently-available
measurements were abtained from fuel assembliesirradiated in the 1970s. There are currently no
rigorous criteria against which the applicability of the isotopic database can be gauged, and engineering
judgement is required. The database may be characterized in terms of the obvious enrichment and burnup
range, fudl assembly design, and BPR exposure (integral and non-integral). Other more subtle factors
(eq., the effects of adjacent assembliesin complex core loading patterns and fuel management schemes)
may be more difficult to evaluate.

The enrichment and burnup combinations of the 56 PWR spent fuel samples used in this study were
summarized in The enrichment and burnup combinations of the actual inventory of spent fuel
assemblies discharged from PWRs in the U.S. through 1998, areillustrated in The
radiochemical assay data appear, qualitatively, to provide reasonabl e coverage of the spent fud inventory.
The fuel assembly designs also represent a wide range of assembly classes. Assembly designs
with large water holes (e.g., CE 14 x 14 design) areincluded. The experimental database also has a
reasonable number of assemblies that incorporate guide tubes and assemblies operated with BPRs. The
H. B. Robinson assembly included stedl-borasilicate glass rods, and the Calvert Cliffs assembly BT03
operated with Al,Os—B,4C rods. The Takahama-3 assemblies were the only assemblies incorporating
gadolinia (Gd,Os) integral burnable poison rods, commonly used in many modern assembly designs.

Although assemblies with BPRs are represented in the database, the number of these samples compared to
thetotal databaseisreatively low. Given that many of the assemblies now being discharged have been
exposed to BPRs during their irradiation history, the database may be deemed marginal for these designs.

The Yankee Rowe Westinghouse (WE) 17 x 18 and Trino Vercellese 15 x 15 assembly designs are
somewhat of an anomaly in the database, both in terms of the assembly design and reactor operation.
These reactors operated with control rods (Ag-1n-Gd and Ag-In-Cd), which is not typical of modern

U.S. PWR nuclear plants. Detailed information on the use of the control rods (locations, percent
insertion, etc.) were not available for the assemblies, which resulted in additional uncertainty in the
depletion analysis models. The assembly models for the Trino Vercellese cal culations used reactor-
average control rod information. The models for the Y ankee Rowe calculations excluded the control rods
altogether since insufficient design and operating information was available,

The Yankee Rowe and Trino Vercdlese samples were included in the database since they add to the
diversity of the assembly database. Also, the Y ankee Rowe samples represent some of the higher-
enrichment samples in the database and span a rdatively wide burnup range. However, theinclusion of
the validation results for these assemblies means that additional uncertainty from the poorly-documented
exposure to control rods implicitly contributes to the estimated nuclide uncertainties. Thisis particularly
true for the Yankee Rowe results, since the effects of the control rods were entirely excluded in the
calculations. Consequently, any analysis assumptions that may be employed to conservatively account
for uncertainty dueto control rod exposure may lead to double accounting of the control rod effectsin a
burnup-credit calculation. For this reason, it may be argued that inclusion of these data sets to evaluate
nuclide uncertainties for the analysis of modern PWR fuels is not reasonable. The Yankee Rowe results
exhibit the largest consistent deviations between calculations and measurements of all resultsin the
database. The impact of excluding the Y ankee Rowe fuel samplesis evaluated in
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Figure2 Enrichment and burnup combinations of discharged spent fuel inventory from
pressurized-water reactors in the U.S. prior to 1999. The number of discharged assembliesin each
interval is given in the legend (data obtained from
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Anocther potential consideration is the degree to which the experimental data represent fuel near the ends
of the assembly. The end regions of the assembly become more important in burnup credit because of the
lower burnup in these regions due to the axial-burnup profile. This phenomenon is discussed in more
detail in A number of the spent fuel samples in the database were obtained from axial
locations very near the end of the assembly. For example, the Calvert Cliffs samples included six
samples obtained from locations within 30 cm of the assembly end. The Takahama-3 samples also
included several samples located near the end of the assembly. Notably, the Takahama-3 sample
identified as SF97-1, was located approximately 4 mm from the end of the active fud length. This
sample was not evaluated in this study, but was evaluated previously in Theresults indicate that
the predicted actinide concentrations in SF97-1 exhibit larger deviations than other sample locations. The
concentration of the fissile plutonium isotopes **Pu and **Pu are significantly overpredicted compared to
measurement, suggesting that the reactivity associated with the samples located extremely closeto the
end of the fuel will also be overpredicted. Therefore, the calculated nuclide concentrations are expected
to lead to dlightly conservative reactivity effects for the region of the fuel at the very ends of the
assembly.

With the notable exception of the Takahama-3 results, the publicly-available radiochemical assay data are
obtained from relatively old experiments, and therefore involved older assembly designs. The present
direction in the commercial nuclear power industry is towards the use of higher initial enrichments and
burnups, more complex assembly designs, increased use of burnable poisons, and more complex fuel
management schemes. Although the characteristics of the fuels in the database are deemed to be
reasonably representative of modern fuel types, there is a continuing need to obtain additional assay data
for modern fuel designs and modern reactor operations.
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5 UNCERTAINTY RESULTS

The nuclide bias and uncertainty values calculated from the PWR isotopic validation results presented in
and summarized in were used as a common basis to estimate the overall effect of
the nuclide uncertainties on the calculated kg for a spent fuel cask. A margin associated with the nuclide
variability was predicted using the bounding methodology and compared to the margins obtained using
the different best-estimate strategies of uncertainty propagation: (1) Monte Carlo uncertainty sampling,
(2) direct difference, and (3) S'U methods. The margin associated with the nuclide uncertaintiesis one
component that contributes to the overall margin of subcriticality.

This section evaluates the effects of nuclide uncertainty only. The effects associated with nuclide bias are
addressed separately in Section 6.

Again, it is emphasized that the analyses presented in this report address only the variability associated
with the predicted spent fuel nuclide compositions used in a burnup-credit criticality calculation.
Additional uncertainties associated with the actual criticality calculation itself (e.g., cross-section
uncertainties, etc.) are not considered. Also, the effects of conservative modeling assumptions or
additional margins to bound other depletion uncertainties (e.g., fission power, irradiation history, soluble
boron concentration, fuel temperatures, expasure to control rods, etc.) must be addressed separately.

All criticality calculations were performed using a common fuel and cask design. The spent fud
assembly was assumed to be a WE 17 x 17 OFA design, and the cask design was based on a conceptual
generic rail-type burnup-credit cask that would accommodate 32 fuel assemblies. The cask and fuel
assembly descriptions and specifications are given in Burnup-credit calculations were performed
to address the effect of using both a flat (uniform) burnup distribution and a bounding axial-burnup
profile. The calculations performed with an axial profile assumed a fixed profile for all burnups, based on
an 18-axial-zone prafile derived for assemblies with an average burnup greater than 30 GWd/M TUl

Theresults presented in this section are intended to illustrate the typical margins predicted using different
uncertainty propagation methods and a common set of nuclide validation results, so that informed
judgements on the benefits of, and required effort for, the various approaches can be made.
presents results for actinide-only burnup credit, and presents results for actinide plus fission-
product credit. These results are based on a generic burnup-credit cask and the burnup and criticality
calculations were performed using the SCALE code system. Theresults for specific fuel and cask-design
configurations and other code systems must be assessed individually.
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5.1 ACTINIDE-ONLY BURNUP CREDIT

The recommendations within the | SG-8 Rev. 1 guidance] limit the amount of burnup credit to that
available in the actinides only (i.e, fission products are conservatively excluded). The burnup-credit
calculations presented in this section were performed assuming actinide credit only. Therefore, the ke
uncertainties predicted using the different methodologies reflect only the uncertainties in the predicted
actinide concentrations.

5.1.1 Bounding M ethod

An upper limit on the effect of nuclide uncertainty in acriticality calculation was first estimated using a
bounding approach, whereby the concentrations of the individual burnup-credit nuclides were
conservatively adjusted to reflect the bias and uncertainty in the predicted concentration of each nuclide.
The concentrations for all fissile isotopes were always increased, and all neutron-absorbing isotopes were
simultaneously decreased. In this study, the calculated concentrations (C;) were conservatively adjusted
such that the value applied in the criticality calculation (M;) was

M, = C (X, %2s)

where X_I is the average experiment-to-measured ratio for nuclidei, and s is the standard deviation

associated with X_I . Adjusting the concentrations by two standard deviations (2s) is sufficient to ensure
an adjusted concentration will indeed be conservative with a probability that exceeds 0.97 (for a one-sided

Gaussian distribution). The sign of the standard deviation term is determined such that the adjusted
concentration will yield a more reactive system. This approach will lead to a highly conservative,

bounding estimate of ke for the system. Theresults presented in this section applied values of X_I from
instead of the X, ” values that do not credit positive bias. The effect of hiasis addressed
separately in using both the X, and the conservative X’ values.

All of the important burnup-credit actinides listed in were applied in the criticality analysis.
Additional tolerance factors that account for uncertainty due to the limited sample size may also be
applied in such analyses. Tolerance factors were not applied in this study since the sample population for
the important actinides was sufficiently large that this uncertainty contribution was considered small.

A more detailed discussion of statistical methods and the use of tolerance factorsis given in

The bounding criticality calculations were performed using the (Standardized Analysis of
Reactivity Using Burnup Credit in SCALE) burnup-credit code sequence to be rdeased with SCALE 5.
STARBUCS couples the burnup and decay calculations and the criticality calculations within a single
integrated sequence. The burnup calculations within STARBUCS are performed using the ARP and
ORIGEN-S depletion modules of STARBUCS will perform the criticality calculation using
either the KENO V.a or KENO-VI 3-D Monte Carlo criticality codes@ All criticality calculationsin this
study were performed using KENO V.a and the SCAL E 44-group ENDF/B-V-based cross-section library.

The results of the bounding criticality calculations arelisted in for spent fuel with a fixed initial
enrichment of 3.5 wt % and burnup values extending to 60 GWd/MTU. Criticality calculations using a
uniform axial-burnup profile and a conservative axial-burnup profile are compared. The ke values

calculated using the predicted nuclide concentrations, without any adjustment, are listed as nominal ke
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Table 6 Results of actinide-only bounding criticality calculations

Axial Neutron multiplication factor (ke) Bounding margin
Burnup® profile Best-

Case | (GWA/MTU) | included | Nominal | estimate | Bounding kg Akl Kest ©
1 10 No 1.0561 1.0609 1.0813 0.0204 1.92%
2 20 No 0.9956 0.9991 1.0239 0.0248 2.48%
3 30 No 0.9316 0.9384 0.9681 0.0297 3.16%
4 40 No 0.8774 0.8832 0.9157 0.0325 3.68%
5 50 No 0.8258 0.8340 0.8698 0.0358 4.29%
6 60 No 0.7970 0.8028 0.8410 0.0382 4.76%
7 10 Yes 1.0527 1.0573 1.0765 0.0192 1.82%
8 20 Yes 0.9924 0.9996 1.0213 0.0217 2.17%
9 30 Yes 0.9447 0.9489 0.9738 0.0249 2.62%

10 40 Yes 0.9013 0.9078 0.9352 0.0274 3.02%
11 50 Yes 0.8647 0.8706 0.9003 0.0297 3.41%
12 60 Yes 0.8383 0.8431 0.8753 0.0322 3.82%

3 Standard deviation of all KENO V.a kg calculations < 1073,

b Initial enrichment of 3.5 wt % 2°U.

¢ Calculated using bias and uncertainty adjusted concentrations.
4 Bounding — best-estimate ke values.

® AKg / Kot X 100%, where kg is the best-estimate kg value.
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valuesinthetable. The kg values obtained using the calculated nuclide concentrations, corrected only for

the average bias (e.g., CiZ) arelisted in the table as the best-estimate values. The bounding ke values

in were calculated using the limiting values for the actinide concentrations. The bounding
margins, calculated as the diff erences between the bounding and best-estimate kg values, are expressed as
the Ak and as the relative margin, Akes / K. These margins represent a limiting single-valued estimate
of the maximum possible effect of the nuclide variability on the kg values. It isimportant to note that the
bounding margins presented in include only the effects of nuclide uncertainty, and not bias.

Theresults indicate that the margin associated with nuclide variability increases with burnup, assuming a
fixed initial enrichment. Thisis attributed to larger nuclide uncertainties associated with some of the
transuranic actinides (see svaluesin that increase in concentration with burnup. For uniform
axial burnup, the maximum relative margin is about 4.8% for an enrichment of 3.5 wt % and a burnup of
60 GWd/MTU. Noatethat this burnup is significantly greater than that experienced by typical discharged
commercial fuel with an enrichment of 3.5 wt % (see Figure 2)] Theresultsin indicate that the
bounding relative margin associated with the actinide uncertainties for a burnup of 40 GWd/MTU, an
average burnup for aninitial enrichment of 3.5 wt %, is about 3.4%.

The effect of the nuclide uncertainties simulated with an axial-burnup profile is observed to be somewhat
less than that for uniform axial burnup. The lower burnup near the ends of a fue assembly, and the
concomitant increase in the flux and fission density near the ends, |eads to a strong sensitivity of the
neutron multiplication factor to the compositions near the end of the fuel assembly. Since the effect of
nuclide uncertainties on the neutron multiplication factor is observed to decrease as the burnup decreases,
the effect is also expected to decrease when an axial-burnup profile is applied since the burnup near the
neutronically-important fuel ends will decrease. Based on this observation, the axial profilesthat are
most reactive (i.e., those that have large burnup gradients near the ends) are also anticipated to exhibit a
smaller bounding margin. Conversely, the margins derived assuming an assembly-averaged burnup
(uniform distribution) are expected to bound those with a variable axial profile because the average
assembly burnup is always greater than that near the ends of the assembly.

Theimportance of the actual axial-burnup profile used to calculate a bounding margin is expected to be
small, since the differences observed between the calculations performed using a uniform assembly-
average burnup and a conservative axial-burnup profile are seen to be relatively minor.

5.1.2 Monte Carlo Uncertainty Sampling

In the Monte Carlo method the nuclide concentrations are randomly varied according to their measured
variance, as determined from the nuclide validation results, to simulate the random nature of uncertainty
in the criticality calculation. In this procedure, nominal calculated nuclide concentrations and their
estimated bias and uncertainty (obtained from arerequired input. Nuclide concentrations are
randomly sampled, according to the measured variance, about the best-estimate (bias-corrected)
concentration for each nuclide and applied in a criticality calculation to determinethe kg. The criticality
calculations are repeated, randomly sampling new values for the nuclide concentrations used in each
calculation, until a sufficient number of criticality calculations have been run to provide ardiable
estimate of the mean and variance of the distribution of ke results.
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The distribution of the expected concentration of given nuclide M; can be estimated as follows:
M, = C (Z"' R,S)

where R isarandom number selected from a normal distribution, i.e., the distribution of R_ is not
uniform but has a mean of 0 and a standard distribution of 1. In other words, given adequate sampling,

the mean value of M; would converge toward the best-estimate value of C; X_I , and the distribution of M;
values would have a standard deviation of s.

The criticality calculations were performed using the KRONOS codé”! Several important modifications
to the code (as described in were made for this study: (1) the bias and uncertainty values for the
burnup-credit nuclides used in the KRONOS calculations were updated using the revised evaluations of
56 radiochemical assay experiments (Table 5)] (2) tolerance factors to account for uncertainty due to the
sample size were not implemented, (3) all isotopes were sampled assuming a normal probability
distribution, and (4) the method of random sampling for problems involving multiple fissionable regions
applied when simulating variable axial-burnup distributions was corrected. For calculations involving an
axial-burnup profile modeled with many axial zones, the original KRONOS uncertainty sampling scheme
underpredicted the kg uncertainty.

KRONOS calculations were performed using the generic burnup-credit cask model and all burnup-credit
actinides from The KENO V.acriticality code and the 44-group ENDF/B-V cross-section
library of SCALE were used for the calculations. In this study, 100 separate criticality simulations were
used to determine the uncertainty associated with a kg value. The nuclide bias and standard deviations
input to KRONOS were the values listed in These values are assumed to be independent of
enrichment and burnup.

The KRONOS results arelisted in Thetablelists the nominal kg value calculated using
unadjusted nuclide concentrations calculated using SCALE, the best-estimate results obtained using
predicted nuclide concentrations corrected for bias only, and the mean kg value and its associated
uncertainty as derived from the multiple KENO V.a criticality calculations run by KRONOS using the
randomly-varied nuclide concentrations. The kg uncertainty is listed as the +26 uncertainty interval of
the kg distribution. Therelative uncertainty inthe kg isalso listed. Clearly, the mean of the ke
distribution and the best-estimate results should yield the same kg value, and indeed the results are
statistically the same. The 26 uncertainty margin in the kg valuesiis plotted in Figure 3 for calculations
performed with a uniform and a variable axial-burnup profile.

The nominal and best-estimate ke results are observed to be statistically the same as the values calculated
using the bounding approach presented in This result is expected since both methods are based
on the same nuclide validation data. Theresults are not exactly equal because of different random
number sequences used in the KENO V.a Monte Carlo calculations. The 26 uncertainty margin
estimated using the Monte Carlo method is significantly smaller than the limiting margins predicted using
the bounding method. The maximum uncertainty margin obtained using the best-estimate method for an
enrichment of 3.5 wt % and burnup of 60 GWd/MTU and a uniform axial burnup is+0.0188. Expressed
inrelativeterms, the margin is+2.3%. Thisis compared to the rdative margin estimated using the
bounding method of +4.8% for the same enrichment and burnup. The additional margin imposed by the
bounding method is a result of the highly conservative, but unrealistic method of combining the effects of
individual nuclide variability using a limiting and worst-case approach.
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Table 7 Results of Monte Carlo actinide-only ke uncertainty calculations

Axial Neutron multiplication factor (ke)®
Burnup?® profile KRONOS®
Case | (GWA/MTU) | included | Nomina | Best-estimate mean kg + 20 (%)
1 10 No 1.0572 1.0607 1.0608 + 0.0136 (1.28%)
2 20 No 0.9960 0.9982 0.9987 + 0.0130 (1.30%)
3 30 No 0.9334 0.9374 0.9381 + 0.0136 (1.45%)
4 40 No 0.8763 0.8810 0.8818 + 0.0146 (1.65%)
5 50 No 0.8283 0.8344 0.8332 + 0.0158 (1.90%)
6 60 No 0.7965 0.8030 0.8023 + 0.0188 (2.34%)
7 10 Yes 1.0537 1.0581 1.0573+ 0.0134 (1.27%)
8 20 Yes 0.9935 0.9982 0.9978 + 0.0130 (1.30%)
9 30 Yes 0.9448 0.9471 0.9491 + 0.0126 (1.33%)
10 40 Yes 0.9021 0.9065 0.9066 + 0.0130 (1.43%)
11 50 Yes 0.8644 0.8679 0.8692 + 0.0134 (1.54%)
12 60 Yes 0.8400 0.8442 0.8451 + 0.0138 (1.63%)

3 |nitial enrichment of 3.5 wt % *°U.

b Standard deviation of all KENO V.a ke calculations < 102,
¢ Uncertainty estimated from 2o in the distribution of ke values calculated using KRONOS.

An assumption inherent in random sampling is that the uncertainties for the different nuclides are
independent. That is, the uncertainty for any particular nuclideis independent of the uncertainty in
another nuclide. Although the biases are known to be highly dependent, the uncertainties are expected to
be random and independent. The basis for this assumption is explored in more detail in the following
section.

The relative margin (see Figure 3) calculated with an axial-burnup profile are observed to be less than for
auniform (flat) burnup distribution for burnups exceeding 30 GWd/MTU. Again, thisreduction is
attributed to the lower burnup at the end regions of the assembly, which become increasingly important as
the assembly burnup increases. The results indicate that the effect of the nuclide uncertainties derived
using aflat burnup distribution will bound those derived with a variable axial profile.
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Figure 3 Relative margin associated with nuclide uncertainty estimated using the Monte Carlo
sampling method for actinide-only burnup credit. The margin represents the 2c uncertainty interval in the
ket distribution. The results are shown for both a uniform (flat) and an axially-varying (axial) burnup
profile. These results have assumed a fixed initial fuel enrichment of 3.5 wt % 2*U.
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5.1.3 Direct Difference M ethod

The direct difference method applies measured spent fuel nuclide compositions directly in a criticality
calculation and compares the kg results with those obtained using computed nuclide compositions. For
each set of measured burnup-credit actinide compositions, two criticality calculations are performed; one
using the measured concentrations, the other using predicted concentrations. The difference in the kg
results (Ake) yields a direct measure of the aggregate effect of nuclide bias and uncertainty in the
criticality calculation. The method requires an adequate number of diverse experiments with
measurements for a common set of the major actinides. Provided a sufficient number of such comparisons
can be made, the bias can be estimated from the mean of the Ak distribution, and the variance can be
derived from the distribution of the Ak values about the mean.

The direct difference method does not require any evaluation of the bias or uncertainty in the predicted
concentrations for individual burnup-credit nuclide. Therefore, the methods makes no a priori
assumptions about the potential trends in the nuclide bias and uncertainty with enrichment or burnup.
Similarly, there are no required assumptions that the nuclide uncertainties are independent, or that the
probability distributions of the uncertainties are normally distributed. This method allows the net trends
in the kg bias and the uncertainty to be determined directly from the experimental data.

A practical limitation of this method is that few experiments contain measurements for all of the
important burnup-credit nuclides. However, most sets contain measurements for the important uranium
and plutonium isotopesin In this study, several different actinide subsets were considered, each
set consisting of a unique set of burnup-credit actinides. The different actinide sets evaluated in this
report arelisted in Thefirst subset (Set 1) included only the major uranium and plutonium
isotopes *°U, U, #°U, “°Pu, Pu, and **'Pu for which measurements (see were available for
all 56 spent fuel samples. Combined, these nuclides represent > 90% of the reactivity worth from all
actinides in spent fuel 5 years after discharge. Subsets with additional actinides (minor U and Pu, and Np
and Am) were also evaluated. However, asthe number of actinides increases, the number of available
experiments that report measurements for all of the actinides decreases. A judicious selection of the
burnup-credit actinides used in the criticality calculation is required to ensure an adequate number of
comparisons are available to enable a statistically-reliable interpretation of the results. Note that some
actinides considered here may not be recommended for usein burnup credit based on insufficient
reactivity-worth (cross-section) validation. Therefore, availability of radiochemical assay data is not the
only consideration in seecting the burnup-credit actinides used in the criticality calculation.

The measured data for the Obrigheim reactor spent fuel samples do not include #2U, effectively
precluding use of the Obrigheim data by the direct difference method. However, the amount of 22U
depletion in commercial LWR fud is low (typically < 3%) and consequently the relative uncertainty in
code predictionsis small. Therefore, calculated >*U concentrations were used in place of measured
concentrations for the Obrigheim data.

All criticality calculations were performed using the generic 32-assembly burnup-credit cask and fuel
assembly configuration described previously. The measured and calculated nuclide concentrations were
assumed to be uniformly distributed axially and radially in the fuel region (i.e., no axial-burnup profile
was applied). Analyses using an axial-burnup profile are not possible using the direct difference method
because measurements provide data for only a single burnup value. Thus, measurements are not available
for the range of axial-burnup values necessary to simulate an axial profile. Asdescribedin
the assumption of a uniform (flat) burnup results in a larger uncertainty margin compared to an axially-
varying burnup profile, and is therefore conservative.
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Table 8 Burnup-credit actinide sets

Adtinide Actinides included in the criticality calculations
Sd na 234U 235U 236U 238U 238Pu 239Pu 24OPu 241Pu 242Pu 241Am 243Am 237Np
1 56 X | x | X X X X
2 28 X | X | X X X X X X X
3 16 X | X | X X X X X X X X
4 41 x | x | x | x X X X X X X X

& Total number of samples available in each set.
® X indicates nuclideincluded in the set.

The ket results for the major burnup-credit actinidesin Set 1 (*°U, 2°U, 22U, #°Pu, *°Pu, *'Pu) arelisted
in Thetablelisted the kg values obtained using the measured concentrations for each sample,
and the values obtained using the concentrations as obtained directly from the burnup calculations. The
Ak values are the difference between the kg; values using computed and measured actinide
concentrations. Therdative differenceis also listed for each sample. Negative Aky; values indicate that
the ke value obtained using the computed actinide concentrations was underpredicted with respect to the
value obtained using measured concentrations. The mean bias was determined from a linear regression fit
of the data, and the +2c uncertainty interval derived from the distribution of Ake; values and Akg/Kest
values about the linear regression fit are listed at the bottom of thetable. The relative uncertainty margin
is plotted as a function of sample burnup in The figure shows the linear regression fit and the
+2c uncertainty interval of the data. Thetrends in the bias and the uncertainty level were found to be
similar for the analysis of both the Ake; and A/ Kesr results.

Thelinear regression fit of the data shownin is constrained to intercept the origin since the
measured and cal culated nuclide concentrations approach the same values as the burnup approaches zero.
However, performing the least-squares fit with no intercept constraint till yields an intercept of zero,
within the fit uncertainty, indicating that the data are consistent with this assumption. Thefit indicates an
increasingly negative bias in the calculated kg (i.€., atrend to underpredict ke;) with burnup. The slope of
thelineis small but is statistically significant. The maximum negative bias (Aky) is < 0.01 over the range
of thedata. The+2c relative uncertainty interval of the datais about +1.8%.

The same data, plotted as a function of initial sample enrichment instead of burnup, are shownin

The results indicate a negative bias trend with increasing enrichment, similar to that seen with
burnup. Note that the deviations for the high-burnup and high-enrichment fuel samples are observed to
be similar to those for the other lower-enrichment samples.

A review of and B suggests that two data sets, namely Yankee Rowe and H. B. Robinson 2,
yield erratic results that contribute a large part of thetotal uncertainty. A review of these experiments
indicates that the H. B. Robinson data were obtained for a fud rod that was adjacent to both a BPR and a
water hole. Sincethe SCALE calculations are designed to predict the assembly-averaged neutronic
environment and hence assembly-averaged nuclide compasitions, it is perhaps not surprising that larger
deviations are seen for these samples. The Yankee Rowe results exhibit some of the largest
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Table9 Summary of kg calculations for actinide Set 1

Section 5

a
Enrichment Burnup Measured & Calculated

Reactor (Wt %) |(GWJ/MTU)|  jsotopics isotopics AKest At/ Kett
Calvert Cliffs 3.04 44.3 0.7862 0.7850 —-0.0012 —0.153%
Calvert Cliffs 3.04 27.4 0.8771 0.8688 —0.0083 —0.946%
Calvert Cliffs 3.04 37.1 0.8236 0.8108 -0.0128 -1.554%
Calvert Cliffs 2.72 33.1 0.8037 0.8061 0.0024 0.299%
Calvert Cliffs 2.72 18.7 0.8949 0.8922 —-0.0027 —0.302%
Calvert Cliffs 2.72 26.6 0.8481 0.8390 —0.0091 -1.073%
Calvert Cliffs 2.45 46.5 0.6983 0.7017 0.0034 0.487%
Calvert Cliffs 2.45 31.4 0.7663 0.7616 —-0.0047 —0.613%
Calvert Cliffs 2.45 37.3 0.7364 0.7327 —-0.0037 —0.502%
H. B. Robinson 2.56 31.7 0.7975 0.8160 0.0185 2.320%
H. B. Robinson 2.56 285 0.8376 0.8272 -0.0104 -1.242%
H. B. Robinson 2.56 23.8 0.8378 0.8487 0.0109 1.301%
H. B. Robinson 2.56 16.0 0.8984 0.8998 0.0014 0.156%
Obrigheim 3.13 25.9 0.9016 0.8966 —0.0050 —0.555%
Obrigheim 3.13 26.5 0.8930 0.8941 0.0011 0.123%
Obrigheim 3.13 28.0 0.8919 0.8836 —0.0083 —0.931%
Obrigheim 3.13 28.4 0.8863 0.8819 -0.0044 —0.496%
Obrigheim 3.13 29.0 0.8874 0.8789 —0.0085 —0.958%
Obrigheim 3.13 29.5 0.8793 0.8755 —0.0038 —0.432%
Takahama-3 411 14.3 1.0515 1.0527 0.0012 0.114%
Takahama-3 4.11 24.4 1.0063 1.0072 0.0009 0.089%
Takahama-3 411 35.4 0.9667 0.9598 —0.0069 -0.714%
Takahama-3 411 36.7 0.9537 0.9437 -0.0100 —1.049%
Takahama-3 411 30.4 0.9742 0.9707 —-0.0035 —0.359%
Takahama-3 4.11 30.7 0.9811 0.9783 —0.0028 —0.285%
Takahama-3 4.11 42.2 0.9365 0.9303 —0.0062 —0.662%
Takahama-3 411 47.0 0.9115 0.9027 -0.0088 —0.965%
Takahama-3 411 47.3 0.9066 0.8923 -0.0143 -1.577%
Takahama-3 4.11 40.8 0.9222 0.9193 —0.0029 -0.314%
Trino Vercdlese 3.90 12.0 1.0519 1.0520 0.0001 0.010%
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Table 9 (continued)

a
Enrichment|  Burnup Measured & Calculated
Reactor (wt%) |(GWd/MTU)| isotopics isotopics Akt AKgilKet® |
Trino Vercellese 3.13 154 0.9851 0.9815 —0.0036 —0.365%
Trino Vercellese 3.13 15.9 0.9766 0.9801 0.0035 0.358%
Trino Vercellese 3.13 115 0.9989 0.9993 0.0004 0.040%
Trino Vercellese 3.13 12.9 0.9972 0.9926 —0.0046 —0.461%
Trino Vercellese 3.13 20.6 0.9623 0.9561 -0.0062 —0.644%
Trino Vercellese 3.13 23.7 0.9448 0.9428 —0.0020 -0.212%
Trino Vercellese 3.13 24.3 0.9451 0.9381 —0.0070 —0.741%
Trino Vercellese 3.13 239 0.9483 0.9429 —0.0054 —0.569%
Trino Vercellese 3.13 24.6 0.9431 0.9358 —0.0073 —0.774%
Trino Vercellese 3.13 23.9 0.9529 0.9414 -0.0115 -1.207%
Trino Vercellese 3.13 244 0.9423 0.9341 —0.0082 —0.870%
Trino Vercellese 3.13 24.3 0.9534 0.9405 —-0.0129 -1.353%
Trino Vercellese 3.13 24.3 0.9464 0.9366 —0.0098 —-1.036%
Turkey Point 2.56 30.7 0.8283 0.8289 0.0006 0.072%
Turkey Point 2.56 30.5 0.8232 0.8277 0.0045 0.547%
Turkey Point 2.56 31.6 0.8256 0.8255 -0.0001 —0.012%
Turkey Point 2.56 313 0.8257 0.8262 0.0005 0.061%
Turkey Point 2.56 313 0.8208 0.8237 0.0029 0.353%
Y ankee Rowe 3.40 16.0 1.0236 1.0143 -0.0093 —0.909%
Y ankee Rowe 3.40 30.4 0.9891 0.9633 -0.0258 —2.608%
Y ankee Rowe 3.40 313 0.9827 0.9606 -0.0221 —2.24%
Y ankee Rowe 3.40 20.2 1.0097 0.9966 -0.0131 -1.297%
Y ankee Rowe 3.40 32.0 0.9798 0.9621 -0.0177 —-1.806%
Y ankee Rowe 3.40 314 0.9759 0.9598 —-0.0161 —-1.650%
Y ankee Rowe 3.40 36.0 0.9421 0.9526 0.0105 1.115%
Y ankee Rowe 3.40 35.3 0.9385 0.9514 0.0129 1.375%
2 Std deviations (£2 o) +0.0161 + 1.76%

3 Standard deviation of all KENO V.a kg calculations < 102

® Defined as (ke — km)/km x 100%, where ki, and k. are the ke values based on measured and cal cul ated
nuclide concentrations.
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Figure4 Relative margin for nuclide uncertainties as afunction of sample burnup for six major
actinides, 2°U, 2°U, 28U, ®°Pu, *°Pu, and ***Pu, for a generic 32-assembly burnup-credit cask. The

linear regression fit and the £26 uncertainty interval of the data are also shown.
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Figure5 Relative margin for nuclide uncertainties as a function of sample enrichment based for

six major actinides, 2°U, 2°U, ®U, #°Pu, *°Pu, and **'Pu, for a generic 32-assembly burnup-credit cask.
The linear regression fit and the £2c uncertainty interval of the data are also shown.
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deviations of any data set. The Yankee Rowereactor used Ag-In-Gd cruciform-type control rods, which
is not typical of modern U.S. PWR nuclear plant operation. Insufficient datawere availablein the
specifications to accurately model the control rods and therefore they were excluded from the assembly
models. Yankee Rowe assay rod E6-SE-E4 resided in close proximity to the control rods and was
considered to bein a“highly perturbed” flux region. Similarly rod E6-SE-C2 also resided closeto a
control rod. However, other samples from assay rod E6-C-F6 residing near the center of the assembly
exhibited equally poor agreement.

The+2c uncertainty interval of the data, illustrated in has assumed that the uncertainty is
uniform over the range of the data. In other words, the uncertainty has been estimated based on the
deviation of all data points from the mean, regardiess of the burnup or enrichment of the spent fuel
samples. Potential trends in the uncertainty were evaluated by plotting the deviation as a function of
burnup. The data were binned into burnup intervals to obtain a sufficient number of data pointsin each
group to calculate the standard deviation. Theresults areillustrated in The standard deviation
in each interval isillustrated with all samples included and for a case with the Y ankee Rowe samples
excluded because of their large deviations. The standard deviation does not show a strong dependence on
the burnup of the samples. Therefore, the assumption that the uncertainty is uniform over the range of the
data was deemed to be appropriate.

Additional analyses were performed using the direct difference method for different subsets of the
burnup-credit actinides. Asthe number of actinides included in the criticality analysis increases, the
number of available experiments containing all the desired nuclides decreases. The kg; results for actinide
Sets 2, 3, and 4 (see[Table 8) arelisted in and areillustrated in These sets
include all of the major uranium and plutonium isotopes from Set 1 plus combinations of other minor
actinides. Only five samples from the Takahama-3 reactor included all of the burnup-credit actinides

listed in[Table 1]

Theresultsillustrate that the different minor actinide sets do not significantly alter the bias in the
predicted kg compared to the value obtained using only the major uranium and plutonium isotopes.
Asseenin the relative importance of the actinides not included in Set 1 is low, typically more
than an order of magnitude smaller than the major uranium and plutonium isotopes. An exception is that
for longer cooling times of up to about 100 years, the relative importance of **Am (a neutron absorber)
increases significantly.

Actinide sets that excluded the Y ankee Rowe or H. B. Robinson results (due to missing actinide
measurements in these sets) yielded smaller variances dueto the large variability associated with these
particular experiments. If the Yankee Rowe data are excluded from Set 1 (because of inadequate control
rod information) the bias is unchanged but the relative uncertainty margin decreases from +1.8% to about
+1.3%. If the H. B. Robinson results are also excluded (due to poor sample location) the marginis
reduced further to £1.0%.

It isinteresting to note that the negative trends in the bias and the uncertainties observed using the direct
difference method are similar to those seen in the evaluation of calculational bias and uncertainty
determined using critical state point data for 45 commercial reactor critical configurations (CRCs)
However, the analysis of the CRCs includes uncertainty components from bath the nuclide concentrations
and the criticality calculation, and the results are therefore not directly comparable to the results in this
study. The CRC results exhibit smaller variability, possibly because the CRC measurements do not
include the potentially large experimental uncertainties associated with the measurement of the nuclide
concentrations.
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Figure 6 Standard deviation of the Akg values from direct difference calculations for different
burnup intervals for the actinides in Set 1 (major uranium and plutonium nuclides). Theresults are
illustrated for all spent fuel samples included, and the case with the Y ankee Rowe samples removed.
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Table 10 Summary of ke calculations for actinide Set 2
Ke®

R U @NaMTY) e | e | S| Ak
Calvert Cliffs 3.04 37.1 0.8007 0.7914 —-0.0093 -1.161%
Calvert Cliffs 3.04 44.3 0.7665 0.7620 —0.0045 —0.587%
Calvert Cliffs 3.04 27.4 0.8647 0.8569 -0.0078 —0.902%
Calvert Cliffs 2.72 26.6 0.8318 0.8249 —-0.0069 —0.830%
Calvert Cliffs 2.72 331 0.7843 0.7880 0.0037 0.472%
Calvert Cliffs 2.72 18.7 0.8876 0.8826 —-0.0050 —0.563%
Calvert Cliffs 2.45 37.3 0.7131 0.7108 -0.0023 —0.323%
Calvert Cliffs 2.45 46.5 0.6660 0.6790 0.0130 1.952%
Calvert Cliffs 2.45 314 0.7458 0.7452 —0.0006 —0.080%
Takahama-3 411 14.3 1.0516 1.0514 —0.0002 —0.019%
Takahama-3 411 24.4 1.0043 1.0048 0.0005 0.050%
Takahama-3 411 35.4 0.9578 0.9517 -0.0061 —0.637%
Takahama-3 411 36.7 0.9460 0.9391 —-0.0069 —0.729%
Takahama-3 411 304 0.9694 0.9619 —0.0075 —0.774%
Takahama-3 411 30.7 0.9788 0.9718 —0.0070 —0.715%
Takahama-3 411 42.2 0.9283 0.9209 -0.0074 -0.797%
Takahama-3 411 47.0 0.8987 0.8913 -0.0074 —0.823%
Takahama-3 411 47.2 0.8939 0.8809 —0.0130 -1.454%
Takahama-3 411 40.8 0.9151 0.9118 -0.0033 —0.361%
Trino Vercellese 3.13 12.9 0.9923 0.9895 -0.0028 —0.282%
Trino Vercellese 3.13 20.6 0.9550 0.9502 —0.0048 —0.503%
Trino Vercellese 3.13 23.7 0.9354 0.9387 0.0033 0.353%
Trino Vercellese 3.13 24.3 0.9318 0.9309 —0.0009 —0.097%
Trino Vercellese 3.13 23.9 0.9404 0.9355 —0.0049 —-0.521%
Trino Vercellese 3.13 24.5 0.9325 0.9295 —0.0030 —-0.322%
Trino Vercellese 3.13 24.4 0.9353 0.9334 —-0.0019 —0.203%
Trino Vercellese 3.13 24.3 0.9424 0.9347 -0.0077 —-0.817%
Trino Vercellese 3.13 24.3 0.9337 0.9307 —0.0030 —-0.321%
2 Std deviations (+20) +0.0100 | +1.26%

3 Standard deviation of all KENO V.a kg calculations < 102

® Defined as (ke — km)/km x 100%, where ki, and k. are the ke val ues based on measured and cal cul ated
nuclide concentrations.
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Table11l Summary of kg calculations for actinide Set 3

Ke®

v |01 OWONT) e | e | e | Akl
Takahama-3 4.11 14.3 1.0512 1.0508 —0.0004 —0.04%
Takahama-3 4.11 24.4 1.0034 1.0020 —-0.0014 —-0.14%
Takahama-3 4.11 354 0.9572 0.9523 —0.0049 —-0.51%
Takahama-3 4.11 36.7 0.9470 0.9374 -0.0096 -1.01%
Takahama-3 4.11 30.4 0.9681 0.9637 —-0.0044 —0.45%
Takahama-3 4.11 30.7 0.9797 0.9710 -0.0087 —0.89%
Takahama-3 4.11 42.2 0.9281 0.9204 -0.0077 —0.83%
Takahama-3 4.11 47.0 0.8969 0.8895 -0.0074 —0.83%
Takahama-3 4.11 47.3 0.8952 0.8784 -0.0168 -1.88%
Takahama-3 4.11 40.8 0.9124 0.9069 —0.0055 —0.60%
Trino Vercellese 3.13 20.6 0.9541 0.9531 —0.0010 -0.10%
Trino Vercellese 3.13 23.7 0.9341 0.9365 0.0024 0.26%
Trino Vercellese 3.13 24.3 0.9340 0.9319 —0.0021 -0.22%
Trino Vercellese 3.13 23.9 0.9397 0.9374 -0.0023 —0.24%
Trino Vercellese 3.13 24.5 0.9296 0.9300 0.0004 0.04%
Trino Vercellese 3.13 24.4 0.9325 0.9301 —0.0024 —-0.26%
2 Std deviations (+20) +0.0072 | +£0.79%

3 Standard deviation of all KENO V.a kg calculations < 102,

® Defined as (ke — km)/km x 100%, where ky, and k. are the ke val ues based on measured and cal cul ated
nuclide concentrations.
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Table12 Summary of ke calculations for actinide Set 4
ket

Recior T WaMTY) | e | et Aka | Ak
Calvert Cliffs 3.04 44.3 0.7959 0.7865 —0.0094 -1.181%
Calvert Cliffs 3.04 27.4 0.7599 0.7548 —0.0051 —-0.671%
Calvert Cliffs 3.04 37.1 0.8596 0.8498 —0.0098 -1.140%
Calvert Cliffs 2.72 33.2 0.8253 0.8191 —0.0062 —-0.751%
Calvert Cliffs 2.72 18.7 0.7813 0.7847 0.0034 0.435%
Calvert Cliffs 2.72 26.6 0.8847 0.8818 —0.0029 —-0.328%
Calvert Cliffs 2.45 46.5 0.7072 0.7051 —0.0021 —-0.297%
Calvert Cliffs 245 314 0.6620 0.6734 0.0114 1.722%
Calvert Cliffs 245 37.3 0.7433 0.7427 —0.0006 —0.081%
Takahama-3 411 30.7 0.9729 0.9652 -0.0077 —-0.791%
Takahama-3 411 42.2 0.9205 0.9145 —0.0060 —0.652%
Takahama-3 411 47.0 0.8888 0.8837 —0.0051 -0.574%
Takahama-3 411 47.3 0.8866 0.8736 —-0.0130 —-1.466%
Takahama-3 411 40.8 0.9064 0.9039 —0.0025 —-0.276%
2 Std deviations (£20) +0.0117 | +£1.49%%

3 Standard deviation of all KENO V.a kg calculations < 107,
b Defined as (ke — km)/km % 100%, where k,, and k. are the kg values based on measured and cal culated

nuclide concentrations.
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Figure 7 Relative margin for nuclide uncertainties as a function of sample burnup for actinides
Y, B0y, BBy, %Py, #py, 2pu, Py, and **Am in actinide Set 2, for a generic 32-assembly burnup-

credit cask. Thelinear regression fit and the +2c uncertainty interval of the data are also shown.
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Figure 8 Relative margin for nuclide uncertainties as a function of sample burnup for actinides
23y, B0y, 2By, %Py, py, 2pu, Py, **Am, and **Am in actinide Set 3, for a generic 32-assembly

burnup-credit cask. Thelinear regression fit and the +26 uncertainty interval of the data are also shown.
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Figure9 Relative margin for nuclide uncertainties as afunction of sample burnup for all
important burnup-credit actinides, except **Am, in actinide Set 4, for a generic 32-assembly burnup-
credit cask. Thelinear regression fit and the £2c uncertainty interval of the data are also shown.

45



Uncertainty Results Section 5

The margin to account for nuclide uncertainty predicted using the direct difference results are based on
experimental data with aredatively wide range of enrichments and burnup values. In most cases (but not
all) the sample burnup was commensurate with the initial enrichment. That is, as the enrichments
increase, so do the discharge burnup values. The measured data, and therefore the nuclide bias and
uncertainties, reflect a proportionality between the enrichment and burnup. The uncertainties estimated
previously using the Monte Carlo sampling method in assumed a variable burnup but used a
fixed initial enrichment of 3.5 wt %. Therefore, the enrichment and burnup combinations used in the
Monte Carlo methods are not representative of typical variation in discharged fuel. The margin
determined using the Monte Carlo approach for a burnup of 40 GWd/MTU, and burnup level typical for
an enrichment of 3.5 wt %, isabout 1.7%. Notethat this valueisin good agreement with direct
difference results of about 1.8% over therange of all experimental data. The agreement in the margins
estimated using these independent methods provides strong evidence supporting the assumption that
uncertainties in nuclides concentrations used in burnup-credit calculations can be treated independently.

5.1.4 Sensditivity/Uncertainty M ethod

The S/U method provides an alternate approach for obtaining estimates of subcritical margin to account
for the variability in the nuclide concentrations. The sensitivity-based method was introduced, and
sensitivity terms were previously definedin The method is similar to the Monte Carlo
sampling method in that the bias and uncertainty of each nuclide on the kg value are evaluated on a
nuclide-by-nuclide basis. The combined uncertainty from all nuclides is estimated by assuming the
uncertainty associated with each nuclide is independent of the other nuclides. The validity of this
assumption is supported by the good agreement observed between the margin estimated using the direct
difference method, and that obtained with the M onte Carlo uncertainty sampling method, described in the
previous sections.

The SEN35 sequence was used to calculate relative sensitivity coefficients for the nuclide concentrations
applied inthe KENO V.a 3-D cask criticality model for the generic 32-assembly burnup-credit cask.

The sensitivity coefficients calculated for the important burnup-credit actinides in spent fuel with a fixed
initial enrichment of 3.5 wt % and burnup values from 10 to 60 GWd/MTU arelisted in

A cooling time of 5 years was assumed (i.e., actinide compositions associated with a 5-year cooling time
were applied in the SEN35 sensitivity calculations). Nuclides with a positive sensitivity coefficient
indicate net neutron production (i.e., an increase in the concentration increases the neutron multiplication
factor), while negative coefficients indicate net neutron absorption. Sensitivity coefficients were
calculated for both a uniform (Table B.1) and for an axially-varying (Table B.2) burnup profile. Givena
nuclidei with a standard deviation, s, (obtained from the relative effect of the uncertainty on the
neutron multiplication factor is given by

where S is the sensitivity coefficient for nuclidei. Thetotal uncertainty from all nuclides is estimated by
combining the individual contributions such that
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The margin predicted using the sensitivity method for actinide-only calculations, with and without an
axial-burnup profile, is plotted in The margins are very similar to those obtained using the
Monte Carlo methods presented in Combining the reactivity effect for individual nuclides
using an additive approach (results presented in yields subcritical margins for nuclide
uncertainty that are very close to the values obtained using the bounding approach as presented in

The sensitivity method combines the uncertainty contributions from individual nuclideto obtain an
overall subcritical margin. The sensitivity coefficients, combined with nuclide uncertainty data, can be
used to readily identify the nuclides making the largest contributions to the total nuclide uncertainty in a
criticality calculation. This information may also be used to rank the nuclides in terms of where
additional research effort is needed to reduce the overall level of nuclide uncertainty in burnup-credit
calculations.

5.1.5 Observations

compares the limiting margin from the bounding analysis results with the margins predicted
using the different best-estimate techniques for the uniform-axial-burnup case. The results from the
Monte Carlo and sensitivity methods are very similar. The 26 relative margin for nuclide variability is
about 1.2% at 10 GWd/MTU, increasing to 2.3% at 60 GWd/MTU. Similar agreement between the best-
estimate methods was also found for calculations with an axial-burnup profile. The margins predicted
with an axial-burnup profile are smaller than those without a profile for burnups greater than about

30 GWd/MTU. The margin predicted using best-estimate methods for a burnup of 60 GWd/MTU is
1.6% with an axial-burnup profile, compared to 2.3% with a flat axial profile (e.g., see

The best-estimate uncertainty margins, determined using a 2c criteria, ensure a likelihood greater than
0.97 that the combined effects of nuclide uncertainty will not exceed the margin. The limiting margins
predicted using a bounding approach are approximately two times larger than the margins predicted by
the best-estimate methods. Thus, the bounding margin is equivalent to the best-estimate uncertainty
determined using about a4c confidence interval. The likelihood that a given set of computed nuclide
concentrations will not exceed the bounding margin is roughly 0.99996, illustrating the degree to which
the bounding method is conservative.

Thedirect difference results, simulated for a uniform axial-burnup distribution only, exhibit ardatively
uniform standard deviation (margin for uncertainty) over the range of all experimental data. Theincrease
in the margin with increasing burnup found in the Monte Carlo and the sensitivity results is not evident in
thedirect differenceresults. However, thereis an important distinction between the direct difference
method and the other analysis methods. The direct difference results are derived from experimental data
for awide range of enrichments and burnup values. In most cases (but naot all) the sample burnup is
commensurate with the initial enrichment. That is, as the enrichment increases, so does the discharge
burnup. Theresults, therefore, reflect a proportionality between the enrichment and burnup. However,
the Monte Carlo and sensitivity calculations wereillustrated for cases with variable burnup and a fixed
initial enrichment. Therefore, the results in the low-burnup regime reflect the uncertainty for fud that has
not achieved a typical burnup, while the results in the high-burnup regime reflect fue that is overburned
with respect to theinitial enrichment, as compared to typical discharged fuel. The margins determined
from the £26 uncertainty interval of the Monte Carlo uncertainty method for a burnup of 40 GWd/MTU,
a value commensurate with the initial enrichment of 3.5 wt % “*U used in the analysis, is about +1.7%.
Thisvalueisin good agreement with the value of +1.8% derived using the direct difference method.
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The bounding method yields upper limit margins that are significantly larger than those predicted using
the best-estimate methods. Although all methods used the same nuclide uncertainty data, the bounding
method yielded a larger margin because of the highly-conservative method of combining the uncertainties
of individual nuclides. The bounding approach leads to alimiting margin that is typically a factor of two
times larger than the best-estimate methods for actinide-only burnup-credit calculations.
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Figure 10 Rdative margins for nuclide uncertainties estimated using sensitivity methods for
actinide-only burnup credit. The margins represent the net effect of a 2c variability in the computed
nuclide concentrations. The results are shown for both a uniform (flat) and an axially-varying burnup

profile, and a fixed initial fuel enrichment of 3.5 wt % **°U.

48



Uncertainty Results

Section 5
5.0%
4.0% -
g 3.0%
4
=~
< 2.0% -
1.0% -
0.0% -
10 20 30 40 50 60
BURNUP (GWd/MTU)
@ Bounding | MC O s/U

Figure 11 Relative margins for nuclide variability estimated using the limiting bounding method,
and best-estimate methods for actinide-only burnup credit and a uniform (flat) axial burnup.
The bounding, Monte Carlo (MC) and sensitivity/uncertainty (S/'U) margins were all generated assuming

afixed initial enrichment of 3.5 wt % 2°U.
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5.2 ACTINIDE AND FISSION-PRODUCT CREDIT

The ISG-8 Rev. 1 guidance on burnup credit excludes credit for fission products. However, an estimate
of the additional reactivity margin available from the fission products by the applicant is recommended.
Thefission products, individually, have a small effect on the neutron multiplication factor than the
actinides. Collectively, fission products represent about 25% of the total reactivity of SNF in a cask
configuration. The most important fission products in criticality calculations arelisted in (also
see These nuclides are considered to be most important to dry storage and transport cask
criticality safety analyses. The rélative importance of these nuclides will vary to some degree, depending
on the enrichment, burnup, and cooling time. This section briefly examines some of the difficulties
associated with implementing fission-product credit, and estimates the margin associated with
uncertainties in the nuclide concentrations for actinide and fission-product burnup credit calculations.

The quantity of measured isotopic assay datafor the fission products is considerably less than that
availablefor the actinides, and for some important fission products (e.g., *Mo, *®Ag, and **'Ru) there are
no known sources of publicly-available assay data. The limited quantity of data makes validation of the
fission products difficult, and ultimately will lead to an increased uncertainty in the predicted nuclide
concentrations. Consequently, the amount of negative reactivity that can ultimately be credited from
fission products is likely to be limited until additional measured data are acquired.

The nuclide uncertainties derived in this report are based on the standard deviation of the measured and
calculated nuclide concentrations alone. Tolerance factors that account for the additional uncertainty
component dueto a limited sample size were not applied in this study to either the actinides or the fission-
product uncertainty estimates. Although such tolerance factors will have a minimal impact on the
actinides because of the relatively large number of samples available, tolerance factors will increase the
fission-product uncertainties. Therefore, the effect of fission-product uncertainties estimated in this report
likely underestimate the effect as compared to results based on statistical analyses that include the use of
tolerance factors.

The published spent fuel radiochemical assay programs containing results for the fission products
important in burnup credit are limited primarily to Calvert Cliffs ATM-104 (assembly D047) and the
more recent Takahama-3 measurements. Several other experiments (e.g., KRI) include some fission-
product measurements. The experiments containing fission-product data are summarized in and
were discussed previously in The burnup-credit fission-product nuclides with measured data
(excluding *®Rh, which has only one measurement) represent about 80% of the total reactivity worth
available from all fission products listed in

The margins associated with nuclide uncertainties in calculations using both actinide and fission-product
credit were estimated using the bounding method, and the Monte Carlo sampling and S/U methods used
previously for the actinide-only calculations. The direct difference approach cannaot be applied currently
to the fission products because of the limited amount of nuclide validation data. The direct difference
method requires ardatively large set of experiments containing a common set of measured nuclides.

The Monte Carlo sampling and sensitivity methods, however, do not require such a common data set, and
utilize all available measurements from different experiments.

In this study of the fission products, the nuclides *Tc, *®Rh, **Cs, **Nd, **Nd, **’Sm, ***Sm, ***Sm,
Bigm, 25m, Py, ®°Eu, and **°Gd wereincluded in the criticality calculations. The one *®Rh
measurement provides an estimate of the calculational bias, but precludes an estimate of the standard
deviation since only one measurement is available. For the purposes of thisillustrative study, the relative
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standard deviation of the cal culated **Rh concentration was assumed to be nominally +30%. The
nuclides with no measured data, Mo, *Ag, and '**Ru, were excluded from the criticality analysis.

Theresults using a bounding approach for actinide and fission-product burnup credit, calculated with a
uniform and an axial-burnup profile, arelistedin The limiting margins associated with the
nuclide variability is almost two times larger than the margins observed for the actinide-only calculations
for high-burnup fuel. For calculations with a uniform (flat) axial burnup of 60 GWd/IMTU, therelative
margin is about +8.4%, compared to about +4.8% for actinide-only burnup credit. Theincreaseis
attributed to the relatively large uncertainty for many of the fission products. For the calculations with an
axial-burnup profile and assembly-averaged burnup of 60 GWd/MTU, the relative margin decreases to
+5.9%, compared to +£3.8% for actinide-only burnup credit. As discussed previously, these results do not
include additional fission-product uncertainty to account for the limited number of fission-product
measurements (i.e., tolerance factors). If tolerance factors were applied, the total uncertainty with fission-
product credit could be considerably larger than that found in this study.

Theresults of the Monte Carlo uncertainty sampling calculations performed using the KRONOS code
with actinide and fission-product burnup credit arelisted in The results also indicate that the
margin for nuclide uncertainty is larger when fission products are included. However, theincreaseis
observed to be much less than that seen using the bounding method. The maximum relative margin
estimated using the Monte Carlo sampling method with actinide and fission-product credit and a uniform
axial burnup was +£3.0%, compared to +2.2% when only the actinides are credited. The margins for
calculations that use an axial-burnup profile are again observed to be smaller than those for the uniform
axial-burnup cases.

The uncertainties estimated using sensitivity methods for actinide and fission-product credit are tabulated
inAppendix B) [Table B.3 lists the burnup-dependent relative sensitivity coefficients calculated using the
SEN35 sequence of SCALE, and lists the relative effect on the kg due to the variability in the
individual burnup-credit actinide and fission-product nuclides. The aggregate effect is estimated as the
root sum square of the individual effects (i.e., independent uncertainties). The values are observed to be
in good agreement with the values predicted by the Monte Carlo method. The results obtained by
additively combining theindividual uncertainties are also listed.

compares the margin predicted using the different uncertainty propagation methods for the
uniform axial-burnup case. Theresults for an axial-burnup profile areillustrated in The
margins predicted using the independent best-estimate methods yield nearly identical results for the
uniform axial-burnup and axially-varying burnup profiles. Therelative margin predicted using best-
estimate methods ranges from about +1.6% at 10 GWd/MTU to +£3.2% at 60 GWdJd/MTU for afixed
initial enrichment of 3.5 wt % and a uniform axial burnup. The maximum relative margin at

60 GWd/MTU decreases from £3.2% to about +2.0% when the axial-burnup profileis applied.
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Table 13 Results of actinide plus fission product bounding criticality calculations

Axial Keit * Bounding margin
Burnup® profile Best-

Case | (GWAMTU) | included | Nominal | estimate | Bounding® Ak ® Akl Keit®
1 10 No 1.0207 1.0245 1.0555 0.0310 3.03%
2 20 No 0.9406 0.9438 0.9837 0.0399 4.23%
3 30 No 0.8619 0.8679 0.9145 0.0466 537%
4 40 No 0.7945 0.7997 0.8527 0.0530 6.63%
5 50 No 0.7384 0.7430 0.7982 0.0552 7.43%
6 60 No 0.7016 0.7062 0.7645 0.0583 8.26%
7 10 Yes 1.0146 1.0201 1.0513 0.0312 3.06%
8 20 Yes 0.9480 0.9509 0.9858 0.0349 3.67%
9 30 Yes 0.8903 0.8960 0.9327 0.0367 4.10%

10 40 Yes 0.8438 0.8471 0.8895 0.0424 5.01%
11 50 Yes 0.8010 0.8059 0.8486 0.0427 5.30%
12 60 Yes 0.7710 0.774 0.8195 0.0457 5.91%

3 Standard deviation of all KENO V.a kg calculations < 107,
® | nitial enrichment of 3.5 wt % *°U.

¢ Calculated using bias and uncertainty adjusted concentrations.
4 Best-estimate — bounding values.
€ Ake / ket X 100%, where kg is the best-estimate ky value.
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Table 14 Results of Monte Carlo actinide plus fission-product uncertainty calculations

Axia Neutron multiplication factor (ke)
Burnup® profile KRONOS®
Case | (GWA/MTU) | included Nominal Best-estimate mean kg =26 (%)
1 10 No 1.0198 1.0253 1.0252 + 0.0162 (1.58%)
2 20 No 0.9393 0.9457 0.9447 + 0.0158 (1.67%)
3 30 No 0.8634 0.8693 0.8689 + 0.0194 (2.03%)
4 40 No 0.7967 0.7997 0.8010 + 0.0210 (2.42%)
5 50 No 0.7389 0.7430 0.7438 + 0.0220 (2.82%)
6 60 No 0.7038 0.7064 0.7078 + 0.0110 (3.11%)
7 10 Yes 1.0169 1.0223 1.0205+ 0.0156 (1.53%)
8 20 Yes 0.9463 0.9498 0.9511 + 0.0152 (1.60%)
9 30 Yes 0.8901 0.8941 0.8951 + 0.0150 (1.68%)
10 40 Yes 0.8414 0.8477 0.8470 + 0.0150 (1.77%)
11 50 Yes 0.7998 0.8036 0.8042 + 0.0150 (1.87%)
12 60 Yes 0.7706 0.7757 0.7756 + 0.0152 (1.96%)

3 Gtandard deviation of KENO V.a kg calculations < 107,
® | nitial enrichment of 3.5 wt % *°U.

¢ 20 valueis the standard deviation from the distribution of ke values.
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Figure 12 Relative margins for nuclide variability estimated using the limiting bounding method,
and best-estimate M onte Carlo (MC) sampling, and sensitivity/uncertainty (S/U) methods for actinide and
fission-product burnup credit and a uniform (flat) axial burnup. The criticality calculations were
performed using a generic burnup-credit cask and assumed a fixed initial enrichment of 3.5 wt % “°U.
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Figure 13 Relative margins for nuclide variability estimated using the limiting bounding method,
and best-estimate M onte Carlo (MC) sampling, and sensitivity/uncertainty (S/U) methods for actinide and
fission-product burnup credit and an axially-varying burnup profile. The criticality calculations were
performed using a generic burnup-credit cask and assumed a fixed initial enrichment of 3.5 wt % “°U.
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6 BIASRESULTS

The analyses, in the preceding section, deal primarily with the evaluation of the subcritical margin to
account for the effects of nuclide uncertainties in the criticality calculations. However, in addition to
accounting for the uncertainty, the bias must also be considered. Based on the results presented in

the overall effect of nuclide bias, on average, is observed to be negative (the calculated neutron
multiplication factor is underpredicted). The direct difference results suggest an increasingly negative
bias trend with increasing burnup. Therelative magnitude of the bias effect on the neutron multiplication
factor for actinide-only burnup credit is observed to be less than 1% in kg over the full range of the
experimental data.

The nuclide bias may be estimated directly using the results of the direct difference calculations and
applied as an additional subcritical margin in the criticality calculation. Alternatively, the effect of bias
may be considered by adjusting the predicted nuclide concentrations based on the average bias observed
in the nuclide validation results. That is, the average bias for each nuclidei is applied to improve the
calculated concentration using the relationship:

C = Cix_i

where CT is the bias-adjusted concentration, C; is the calculated concentration, and (Y) isthe

experiment-to-measured ratio. The X valuesin were derived from the average bias of all
samples. There was no attempt in this study to identify potential trends in nuclide bias with the burnup or
enrichment of the sample. Such atask would be a significant undertaking, and would be complicated by
the limited size of the experimental database. This section evaluates the validity of using average nuclide
bias factors, as presented in to represent the effect of bias on the neutron multiplication factor
over the enrichment and burnup range covered by the experimental data.

6.1 ACTINIDE-ONLY BURNUP CREDIT

To estimate the effect of nuclide bias for actinide-only burnup-credit calculations, actinide concentrations
predicted by the burnup calculations were applied directly in the criticality calculation. The calculations
were then repeated using the calculated concentrations adjusted for the average nuclide bias as presented
in The effect of the nuclide bias was then quantified as the differencein the ke values (Akey).

For theinitial bias calculations, the conservatively adjusted nuclide bias factors, X, ’, were applied.

That is, no positive bias was credited in the analysis. The calculations were performed over an
enrichment range from 2.4 to 4.5 wt %. For each enrichment, burnup values were selected that were
representative of the lower-, mid-, and high-burnup fud as determined from inventory of discharged PWR
assembliesinthe U.S. Thelow- and high-burnup values used in the analysis were 10 GWd/MTU lower
and 10 GWd/MTU higher than the average-burnup value, respectively. Therangeis sufficient to cover
the vast mgjority of discharged fud.

Theresults of the actinide-only calculations are listed in and illustrated in The
predicted margin for the nuclide bias in the table is expressed as the Akgs value and as Aky; /AKgr. The
relative margin for bias over all evaluated enrichment and burnup combinations is between —0.5 and
—1.0%. Themarginsin are observed to be relatively constant with increasing enrichment. For
example, therelative margin is between —0.7 and —0.9% for each enrichment value assuming average
(typical) burnup values. In abtaining these results, the burnup was increased as the enrichment increased.
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Table 15 Results of nuclide bias calculations for actinide-only burnup credit
Kett® Bias margin
Enrichment Burnup Bias-

Case | (Wt % *°U) | (GWA/MTU) | Nominal corrected Ake” Akl ket ©
1 24 15 0.9178 0.9231 —0.0053 -0.57%
2 24 25 0.8564 0.8635 —-0.0071 -0.82%
3 24 35 0.8063 0.8133 —-0.0070 —-0.86%
4 2.8 20 0.9294 0.9348 —0.0054 -0.57%
5 2.8 30 0.8692 0.8751 —0.0059 -0.67%
6 2.8 40 0.8190 0.8249 —0.0059 -0.72%
7 3.2 25 0.9375 0.9423 —0.0048 -0.51%
8 3.2 35 0.8773 0.8834 —0.0062 —-0.70%
9 3.2 45 0.8282 0.8341 —0.0058 —-0.70%

10 3.6 30 0.9433 0.9478 —0.0046 —-0.48%

11 3.6 40 0.8855 0.8922 —0.0067 -0.75%

12 3.6 50 0.8355 0.8411 —0.0056 —-0.66%

13 3.9 35 0.9387 0.9437 —0.0050 -0.53%

14 3.9 45 0.8825 0.8891 —0.0066 -0.74%

15 3.9 55 0.8345 0.8417 -0.0072 —-0.86%

16 4.2 40 0.9345 0.9394 —0.0049 -0.52%

17 4.2 50 0.8799 0.8858 —0.0059 —0.66%

18 4.2 60 0.8399 0.8457 —0.0058 —-0.69%

19 4.5 45 0.9302 0.9346 —0.0043 —-0.46%

20 4.5 55 0.8778 0.8837 —0.0060 -0.67%

2 Standard deviation of all KENO V.a kg calculations < 107,
b Nominal — bias-corrected values.

¢ Akg | Kt X 100%, where ke is the bias-corrected kq value.
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Figure 14 Relative margins for nuclide bias for actinide-only burnup credit. The results were
based on bias-adjusted nuclide concentrations that conservatively did not credit positive bias.
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In general, the negative bias margin for a fixed enrichment value is seen to increase with burnup. For
example, therelative margin estimated for 3.9 wt % fuel increases from about —0.5 % at 35 GWd/MTU to
—0.9 % at 55 GWd/MTU.

Theresults obtained by adjusting the individual nuclide concentrations can be compared to the margin
predicted using the direct difference calculations presented in to provide verification of the
approach. Thedirect differenceresults provide a realistic measure of the bias that does not assume that
individual nuclide bias estimates are constant over the enrichment and burnup range. The bias predicted
in the direct difference calculations was assumed to be linear with enrichment and burnup, and was
constrained to go to zero at the origin (zero burnup) sincethereis no calculational bias associated with the
use of fresh-fuel compositions. The magnitude of the bias margin is observed to be comparable between
the two independent methods. However, the margins in the direct difference method increase with
burnup, whereas the bias observed with bias-adjusted nuclide concentrations remains relatively constant
with enrichment and burnup. This effect is attributed to the use of a constant average nuclide bias

(eg., X_I factors) to adjust the calculated concentrations, rather than evaluating the potential burnup and
enrichment dependence of the nuclide biases.

As the burnup approaches zero, it is expected that the approach will overpredict the actual bias.

At higher-burnup values, the biases predicted by both methods are observed to be in reasonably good
agreement. The maximum relative bias estimated for aburnup of 50 GWd/MTU using the direct
difference method is —0.76%. This can be compared to the results obtained using bias-adjusted nuclide
concentrations that range from —0.46 to —0.86 over the burnup interval from 45 to 55 GWd/MTU (value
depends on the enrichment value used in the calculation). Extrapolation beyond the burnup range of the
experimental data (about 50 GWd/MTU), the direct difference method predicts an increasingly negative
bias. However, thisis not observed in the results obtained with bias-adjusted nuclide concentrations, a
procedure that leads to a relatively constant bias effect.

The bias calculations described were repeated using the unadjusted bias factors (X ) listed in that
credit positive nuclide bias. These results yielded a net bias effect that was statistically the same as the

results obtained using the conservative ( X ) biasvalues. That is, the kg results were the same, within the
uncertainty of the KENO V.acriticality calculations. Thisresult is expected since the majority of the
burnup-credit nuclide concentrations are negatively biased in terms of the reactivity effect. The
exceptions (***U, ?®pu, *°Pu) exhibit a small positive bias, or have arelatively small effect on the neutron
multiplication factor.

6.2 ACTINIDE AND FISSION-PRODUCT CREDIT

The effect of nuclide bias was also estimated for calculations involving actinide and fission-product
credit. The average fission-product nuclide bias values were obtained from Unlike the actinide-
only calculations, the results obtained with fission products cannot be independently verified with results
from the direct difference method because of the very limited quantity of experimental fission-product
assay datathat precludes extending the use of the direct difference method to fission products.
Nevertheless, the fission-product results obtained using the bias-adjusted nuclide concentrations are
included in this section for illustrative purposes only. Fission-product credit is not recommended until
such time as the experimental database is expanded to allow adequate nuclide validation.

The results of the actinide and fission product criticality calculations arelisted in and are
illustrated in Again, the margin associated with nuclide bias was expressed as the Akg; value
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Table 16 Effect of nuclide bias for actinide and fission-product burnup credit

Keit® Bias margin
Enrichment Burnup Bias-

Case | (Wt % %°U) | (GWdA/MTU) Nominal corrected Ak Akl Kest ©
1 24 15 0.8719 0.8788 —0.0069 -0.78%
2 24 25 0.7947 0.8026 —0.0079 —-0.98%
3 24 35 0.7336 0.7427 —0.0092 -1.23%
4 2.8 20 0.8737 0.8812 —0.0075 —-0.85%
5 2.8 30 0.8002 0.8085 —0.0083 -1.03%
6 2.8 40 0.7397 0.7485 —-0.0087 -1.17%
7 3.2 25 0.8742 0.8823 —-0.0081 -0.92%
8 3.2 35 0.8024 0.8119 —0.0095 -1.17%
9 3.2 45 0.7440 0.7532 —0.0092 -1.22%

10 3.6 30 0.8731 0.8820 —0.0089 —1.00%
11 3.6 40 0.8049 0.8151 -0.0103 -1.26%
12 3.6 50 0.7464 0.7560 —0.0096 -1.27%
13 3.9 35 0.8619 0.8721 -0.0102 -1.17%
14 3.9 45 0.7961 0.8065 -0.0104 -1.28%
15 3.9 55 0.7408 0.7516 -0.0108 -1.43%
16 4.2 40 0.8536 0.8624 —0.0088 -1.02%
17 4.2 50 0.7897 0.8004 -0.0107 -1.34%
18 4.2 60 0.7436 0.7548 -0.0111 -1.48%
19 4.5 45 0.8421 0.8530 -0.0109 -1.28%
20 4.5 55 0.7830 0.7928 —0.0098 -1.24%

2 Standard deviation of all KENO V.a kg calculations < 107,
b Nominal — bias-corrected values.

¢ Akg | Kot X 100%, where ke is the bias-corrected kq value.
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Figure 15 Relative margins for nuclide bias for actinide and fission-product burnup credit. The
results were based on bias-adjusted nuclide concentrations that conservatively did not credit positive bias.
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and as Ake /AKg. Theresultsindicate that thereis alarger negative bias associated with the use of fission
products. However, further investigation indicated that the majority of the increase is associated with the

use of the conservative nuclide bias factors X_I that do not credit positive bias. When the calculations
were repeated using unadjusted nuclide bias factors the net margin for bias was similar to that observed in
the actinide-only calculations.
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7/ SUMMARY AND CONCLUSIONS

This report has explored several alternative strategies for propagating the effects of nuclide uncertainty to
the predicted neutron multiplication factor, kg, in burnup-credit calculations. described a
conventional bounding method and several different best-estimate methods that can be used to provide
more realistic estimates of the margin associated with effects of nuclide uncertainty. Section 4 provided a
review of currently available radiochemical assay datafor PWR spent fuel, and summarized the results of
nuclide validation studies performed using the SCALE code system. In the nuclide
uncertainties, determined from the comparisons of computed and measured nuclide concentration in
Section 4, were used to predict the margin associated with the nuclide uncertainties using the bounding
and best-estimate strategies.

The bounding method, while easy to implement and clearly easy to defend as conservative, resultsin
limiting and unrealistically large margins to account for nuclide variability. The method of propagating
the effects of nuclide uncertainties in the bounding method overestimates the real importance of nuclide
uncertainties on the predicted ke and precludes a realistic evaluation of the real subcritical margin.

Several different best-estimate strategies for combining and propagating nuclide uncertainties have been
evaluated in this report and compared for a burnup-credit analysis of a prototype burnup-credit rail-type

cask. The best-estimate methods enable a more accurate estimate of the effects of nuclide uncertainty by
realistically simulating the effects of random variability in the nuclide concentrations.

The effects of nuclide uncertainty were addressed separately from the bias which
is a non-random systematic error. However, both components must ultimately be considered in

determining an appropriatey conservative margin of subcriticality in a criticality calculation. The
separate evaluation of the uncertainty and bias in this report enables the criticality analysis to exclude
credit for positive nuclide bias (recommended practice in nuclear criticality safety).

For actinide-only burnup credit calculations the margins for nuclide uncertainty predicted using best-
estimate methods were about one half the limiting margins predicted using the bounding method. When
fission products were included in the analysis the benefits of the best-estimate methods were even larger.

The ISG-8 Rev. 1 guidance recommends a limit on the amount of credit for burnup to 40 GWd/MTU or
less, and recommends a loading offset (additional penalty) for fud with an initial enrichment between

4 and 5wt %. The recommended limits were based to alarge extent on the lack of radiochemical assay
data above 40 GWd/MTU and 4 wt % (the majority of enrichments were less than 3.2 wt %) that were
available for code validation at the time the guidance was issued. The recent publication and analysis of
the Takahama-3 PWR radiochemical assay data significantly extends the range of the validation database.
The nuclide validation results performed with the SCALE system using the Takahama-3 data suggest that
nuclide uncertainties are comparable to those observed in the lower enrichment and lower-burnup
samples. These results suggest that the nuclide uncertainties for SNF exceeding 4 wt % and

40 GWdA/MTU are expected to be similar to SNF below these limits. A more quantitative analysis of the
uncertainties and trends in the data are provided in

The above findings have potentially important implications for the ISG-8 Rev. 1 guidance and may
provide a technical basis to support increased utilization of burnup credit for transportation and storage
casks.

The margins for nuclide uncertainty presented in this study are intended for illustrative purposes only and
cannot be applied directly to other criticality assessments. The cases are given as examplesto
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demonstrate the potential benefits of using best-estimate uncertainty analysis methods. The results
presented in this report are based on a generic rail-type burnup-credit cask and were performed using the
SCALE code system and nuclear data libraries. Results for other configurations and code systems must
be assessed separately. Also, a morerigorous statistical analysis of the isotopic validation data may be
required for safety analysis applications, such as the development and application of tolerance intervals,
which were not considered in this study. Nevertheless, the benefits of best-estimate methods illustrated in
this report are expected to be similar for other configurations and code systems.
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